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Abstract

Background: The gut microbiota impacts on a range of host biological processes, and the imbalances in its
composition are associated with pathology. Though the understanding of contribution of the many factors, e.g.
gender, diet and age, in the development of gut microbiota has been well established, the dynamic changes of the
phylogenetic composition and the interaction networks along with the age remain unclear in pigs.

Results: Here we applied 16S ribosomal RNA gene sequencing, enterotype-like clustering (Classification of the gut
microbiome into distinct types) and phylogenetic co-occurrence network to explore the dynamic changes of pig
gut microbiome following the ages with a successive investigation at four ages in a cohort of 953 pigs. We found
that Firmicutes and Bacteroidetes are two predominant phyla throughout the experimental period. The richness of
gut microbiota was significantly increased from 25 to 240 days of age. Principal coordinates analysis showed a clear
difference in the gut microbial community compositions between pre-weaning piglets and the pigs at the other
three age groups. The gut microbiota of pre-weaning piglets was clearly classified into two enterotypes, which
were dominated by Fusobacterium and p-75-a5, respectively. However, Prevotella and Treponema were the main
drivers of the enterotypes for pigs at the age of 80, 120 and 240 days. Besides the piglets, even some adult pigs
switched putative enterotypes between ages. We confirmed that the topological features of phylogenetic co-
occurrence networks, including scale, stability and complexity were increased along with the age. The biological
significance for modules in the network of piglets were mainly associated with the utilization of simple
carbohydrate and lactose, whereas the sub-networks identified at the ages of 80, 120 and 240 days may be
involved in the digestion of complex dietary polysaccharide. The modules related to the metabolism of protein and
amino acids could be identified in the networks at 120 and 240 days. This dynamic change of the functional
capacities of gut microbiome was further supported by functional prediction analysis.

Conclusions: The present study provided meaningful biological insights into the age-based dynamic shifts of
ecological community of porcine gut microbiota.
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Background
The microbial community of the mammalian gastro-
intestinal tract harbors a complex and dynamic ecosys-
tem, which is populated with as many as trillions of
microbes, including viruses, bacteria, archaea, fungi and
protists [1]. Gut microbiota executes numerous vital
functions for homeostasis ranging from harvesting es-
sential nutrients, regulating host metabolism and main-
taining the immune system [2]. The establishment and
maintenance of the gut microbial ecosystem are crucial
to host health because they ensure the persistent occur-
rence of functions associated with those beneficial mi-
crobes [3]. The gut microbiota can be influenced by diet,
age, host genetics, and many environmental factors [4–7].
A previous study indicated clear differences in the com-
position of gut microbiota among infants, toddlers, adults
and the elderly [8]. The gut microbiota of newborns
undergoes substantial modulation, in which facultative
and strict anaerobes gradually dominate the community
by replacing aerobes [9]. The age-dependent shifts in gut
microbiome reflect the change from the primary lactate
metabolism to the enhancement of plant polysaccharide
metabolism ability [10]. The bacterial diversity of human
gut microbiota increases with age and the phylogenetic
composition evolves towards an adult-like configuration
within the first three years after birth [4]. The most no-
ticeable feature in the gut microbial composition between
young and elderly individuals is an alteration in the ratio
of Firmicutes to Bacteroidetes, in which the young adults
have a higher proportion of Firmicutes and the older
adults show a higher proportion of Bacteroidetes [11]. In
pigs, previous reports indicated that the alpha-diversity
and the taxonomic composition of intestinal microbiota
were significantly altered with the growth of pigs [12–15].
A study in commercially raised pigs found a significant as-
sociation between aging and an increasing measure of
richness and diversity as well as distinct changes of the
core microbiota [16].
The complexity of intestinal flora is reflected in both of

community structure and function capacity due to their dy-
namic nature and compositional variability. Microbes in
gastrointestinal tract form a complex ecological system with
various symbiotic relationships, rather than a simplified col-
lection of independent individuals [17]. The interactions be-
tween or among organisms in a microecological system can
be characterized into the relationships of mutualism, com-
mensalism, amensalism, predation and competition [18].
The co-occurrence patterns of microorganisms and the mi-
crobial relationships are essential for community assembly
and stability [19], and can deduce the various effects on the
host health. The application of system and network theory
can facilitate the analyze of the composition and interaction
of gut microbiota, enhancing our understanding of its com-
plex ecological characteristics [20]. Although the classical

longitudinal analysis captures the changes of gut microbial
composition in outcomes over time, the information about
dynamic changes of the interaction networks between bac-
teria remains unknown. To our knowledge, there has been
no systematic study about longitudinal dynamics of the
phylogenetic composition and the interaction network of
gut microbiota in pigs, especially, in an experimental pig
cohort collected fecal samples at multiple ages. Further-
more, due to the similarity of the pig and human in gastro-
intestinal system and metabolism physiology [21], swine
has been considered as one of the ideal models for studying
the dynamic natures of gut microbiome.
In this study, we employed enterotype-like clustering

analysis and co-occurrence network analysis to investi-
gate the age-based dynamic shifts of pig gut microbiota
in an experimental pig population collected the fecal
samples at four different ages. Our results provided bio-
logical insights into the organization, function and evo-
lution of pig gut microbial community following the age.

Methods
Experimental animals
The experimental cohort was sourced from one pig farm
of Jiangxi Agricultural University in Nanchang, Jiangxi
Province and comprised of 953 pigs from a F6 population
of heterogeneous pig cross, which had been constructed
with eight founder breeds, including four Western com-
mercial pig breeds of Landrace, Large White, Duroc and
Pietran, and four Chinese indigenous pig breeds of Erhua-
lian, Bamaxiang, Tibetan and Laiwu. All pigs were raised
at the experimental pig farm of Jiangxi Agricultural Uni-
versity in Nanchang, Jiangxi. Piglets were housed with
their mothers during suckling period and creep feed was
provided during the last week of lactation (Additional file 1:
Table S1). After the weaning at 28 days, all experimental
pigs were transferred to a uniform fattening house and fed
two times a day with formula diets (Additional file 1: Table
S1). Water was available ad libitum from nipple drinkers.
All boars were castrated at 80 days. All experimental ani-
mals used in this study were healthy and did not receive
any antibiotic treatments within two months before fecal
sample collection. The experimental pigs were slaughtered
at a commercial slaughterhouse at 240 days of age by
bleeding after electrical stunning.

Collection of fecal samples and DNA extraction
Fecal samples were collected at the ages of 25, 120 and 240
days, which represented the time of preweaning, mid-stage
of fattening and slaughtering. A total of 1417 fecal samples
were harvested from the rectum of experimental pigs in the
cohort, including 175 samples collected at the age of 25
days (from 92 females and 83 entire males), 551 samples at
the age of 120 days (from 302 females and 249 castrated
males) and 691 samples at the age of 240 days (from 377
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females and 314 castrated males). In another study, to in-
vestigate the effect of castration on the phylogenetic com-
position of gut microbiota, we collected additional 64 fecal
samples (from 36 females and 28 entire males) in the same
experimental cohort at the age of 80 days (boars were cas-
trated immediately after collected the fecal samples). To
analyze dynamic changes of gut microbiota at more age
times, the bacterial composition data of these 64 samples
were also included in this study. The detailed information
about sampling is shown in the Additional file 2: Figure S1.
All samples were collected in sterile plastic centrifuge

tubes and deep frozen in liquid nitrogen. After trans-
ported to the laboratory, the samples were stored at −
80 °C freezer until use. DNA extraction from the fecal
samples was performed using QIAamp DNA Stool Mini
Kit (Qiagen, Germany) following manufacturer’s instruc-
tions (McOrist et al., 2002). The quality and integrity of
the DNA samples were checked by electrophoresis with
0.8% agarose gel, and DNA concentrations were mea-
sured with a ND-1000 spectrophotometer (Nanodrop
Technologies, USA).

Amplification and sequencing of bacterial 16S rRNA gene
The V3-V4 region of 16S rRNA gene was amplified by
PCR with the barcode fusion forward primer 338F [ACTC
CTACGGGAGGCAGCAG] and the reverse primer 806R
[GGACTACHVGGGTWTCTAAT] under the melting
temperature of 55 °C with 28 cycles. For the bacterial com-
position data of 64 samples harvested at the age of 80 days
mentioned above, only V4 hypervariable region of 16S
rRNA gene was amplified by the fusion primers 515F
[GTGCCAGCMGCCGCGGTAA] and 806R [GGAC
TACHVGGGTWTCTAAT] under the melting
temperature of 56 °C with 30 cycles. The sequencing of
the PCR amplicons was performed with a 250-bp
paired-end procedure on an Illumina MiSeq platform
(Illumina, USA) according to the manufacturer’s manuals.

Bioinformatics processing of sequence reads
To obtain the clean sequence reads, the primer and bar-
code sequences, and the low-quality reads were excluded
from further analysis. FLASH (version 1.2.11) was used to
assemble the paired-end clean reads into tags [22]. To
avoid the bias generated by the different sequencing depth
[23], we rarefied the library size to 10,000 tags per sample.
Unique bacterial sequences with 97% of the sequence
similarity were clustered into operational taxonomic unit
(OTU) using the QIIME software (the toolbox for Quanti-
tative Insights Into Microbial Ecology) [24], which uses
UCLUST (an algorithm to cluster sequence reads based
on similarity) to perform the clustering [25]. OTUs were
matched to bacteria by using a primer-specific version of
the GreenGenes reference database (version 13.5) [26].
We filtered out those OTUs which had relative abundance

less than 0.01% and were presented in less than 1% of the
experimental pigs from further analyses. The
alpha-diversity indexes of chao1, ACE, observed species,
Simpson and Shannon were calculated by Mothur soft-
ware (Version 1.42.0) [27]. The comparison of the relative
abundances of bacterial taxa and the alpha-diversity in-
dexes between two age groups was performed by Wil-
coxon t-test. The P values were adjusted the multiple tests
by Benjamini-Hochberg (BH) method with the threshold
of false discovery rate (FDR) ≤ 5%. In order to evaluate the
effects of host age and sex on microbial composition of
fecal samples, a Bray-Curtis similarity matrix was con-
structed based on the relative abundances of OTUs. We
split the sequences of V3-V4 region of 16S rRNA gene
into the sequences containing only V4 region for the sam-
ples at 25, 120 and 240 days of age. And then, all sequence
data of the V4 region were incorporated together for fur-
ther calculation of Bray-Curtis matrix. Principal coordi-
nated analysis (PCoA) of Bray-Curtis distances was
performed using the R function pcoa.

Enterotype-like clustering
The enterotype-like clustering analysis of fecal microbiota
at four ages was separately performed with the method
described previously [28]. Briefly, we calculated
Jensen-Shannon divergence (JSD) distance for the relative
abundances of bacterial taxa at the genus level by applying
the Partitioning Around Medoids (PAM) method. The op-
timal number of clusters and the groups’ robustness were
evaluated with CalinskiHarabasz (CH) index and silhou-
ette value, respectively. To identify the genera with differ-
ent abundances between the two enterotypes, a linear
discriminant analysis (LDA) effect size (LEfSe) analysis
was performed under the condition ɑ = 0.01, with an LDA
score of at least 3 [29]. Sparse Correlations for Compos-
itional data (SparCC) was employed to determine
co-abundance (positive) and co-exclusion (negative) rela-
tionships between genera based on their relative abun-
dances [30]. Significant correlations between bacterial
genera were detected using the partial correlation and in-
formation theory (PCIT) algorithm [31]. The main abso-
lute correlations (top 15%) were transformed into links
between two genera in the genus network and the net-
works were visualized in Cytoscape (version 3.4.0).

Construction of phylogenetic interaction networks
We filtered out those OTUs which had less than 0.05%
of relative abundance and were presented in less than
10% of the tested samples from further interaction net-
work analysis. Phylogenetic co-occurrence networks of
porcine fecal microbiota at the ages of 25, 80, 120 and
240 days were separately inferred based on the SparCC
algorithm [30]. Significant correlations due to the com-
positional structures of OTUs were detected using the
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PCIT algorithm [31]. The confidence of the interactions
between nodes was established with > 0.55 of absolute
sparse correlation coefficient. We used Cytoscape (ver-
sion 3.4.0) to visualize co-occurrence networks and cal-
culate their topological characteristics including
densities, clustering coefficients and scale-free properties
[32]. The clustering of sub-modules was based on the
vertex weighting by local neighborhood density and out-
ward traversal from a locally dense seed node according
to given parameters. Assessment of biologically import-
ant modules in OTU networks was performed using
Molecular Complex Detection (MCODE) plugin in the
Cytoscape software [33]. To further compare the topo-
logical characteristics of main modules in the interaction
networks, we used Network Analysis Profler (NAP) to
numerically calculate the topological features and
metrics of networks (e.g. average eccentricity, average
number of neighbors, centralization betweenness,
centralization closeness and centralization degree) [34].

Prediction and comparison of functional capacities of
fecal microbiome among four age groups
To compare the potential function capacities of fecal
microbiome among four age groups, we used the phylogen-
etic investigation of communities by reconstruction of un-
observed states (PICRUST) algorithm to obtain the
function profiles of bacterial community [35]. Functional
genes were categorized into KEGG pathways. The relative
abundance of each subclass term of the KEGG pathways
was calculated by summing the abundances of functional
genes that were annotated to the functional subsystem.
Tukey-Kramer post-hoc test was used for pairwise compar-
isons of potential function capacities of fecal microbiomes
among four age groups. Story’s FDR was used to correct
the multiple tests. All tests were performed using Statistical
Analysis of Metagenomic Profiles (STAMP) software [36].

Results
Longitudinal dynamics of fecal microbial composition and
richness
The total numbers of high-quality sequence tags for sam-
ples at the ages of 25, 80, 120 and 240 days were 5,746,871
(an average of 32,839 tags per sample), 1,082,852 (an aver-
age of 16,919 tags per sample), 16,825,154 (an average of
30,536 tags per sample) and 19,749,079 (an average of
28,580 tags per sample), respectively. A total of 3392,
2344, 3401 and 3609 OTUs were obtained. To investigate
the dynamic shifts of fecal microbiota structure along with
the age, the alpha-diversity of fecal microbiota was com-
pared among four ages using the Chao1, ACE, observed
species, Shannon and Simpson index. Interestingly, the
experimental pigs showed the continuously increased in-
dexes of Chao1, ACE and observed species following the
age (Fig. 1A-C). Shannon index, which reflects the

richness and evenness of bacterial taxa, was increased
markedly from the age of 25 to 120 days, but showed no
significant difference between the ages of 120 and 240
days (Fig. 1D). The Simpson index was significantly de-
creased from 25 to 120 days, but slightly increased from
120 to 240 days (Fig. 1E). This result suggested that the
richness of gut microbiota was continuously increased
from 25 to 240 days, but the highest diversity was achieved
at 120 days. PCoA analysis based on the relative abun-
dances of OTUs revealed the distinctly microbial compo-
sitions between pre-weaning piglets and the pigs at the
other three ages (Fig. 1F). The bacterial composition of
fecal samples at the age of 80 days was more similar to
that at 120 and 240 days. However, no distinct difference
was observed in fecal bacterial structures between the ages
of 120 and 240 days.
We further evaluated the age-based dynamic changes

of microbial composition at the taxonomic level. The
phylogenetic compositions of fecal microbiota at the
phylum level at four ages are shown in Fig. 2A. Firmi-
cutes was the most predominant phylum at all four age
stages, but had slightly less abundance in piglets (25
days) compared with that in pigs at the other three ages
(P > 0.05). The relative abundance of Bacteroidetes was
increased from the age of 25 to 80 days (P < 0.0001), but
subsequently decreased after 80 days (P < 0.01). The rela-
tive abundances of Proteobacteria and Fusobacteria were
decreased dramatically after the age of 25 days (P <
0.0001). At the genus level, the fecal microbiota of pig-
lets was dominated by Bacteroides, Fusobacterium,
p-75-a5 and Prevotella, whereas Lactobacillus, Prevo-
tella, Ruminococcus and Treponema were the core bac-
teria for fecal samples at 80, 120 and 240 days of age
(Fig. 2B). The relative abundances of three predominant
genera in pre-weaning pigs, including Bacteroides, Fuso-
bacterium and p-75-a5 were significantly decreased after
25 days of age (P < 0.0001; Fig. 2B). The relative abun-
dances of Lactobacillus, Prevotella and Ruminococcus
were significantly increased from 25 to 80 days of age (P
< 0.0001), but subsequently decreased from the age of 80
to 120 days (P < 0.05). However, there was no significant
difference between 120 and 240 days. The proportion of
Treponema was significantly increased from 25 to 120
days (P < 0.05), but showed no significant difference be-
tween 120 and 240 days (P > 0.05).
Besides age, we also evaluated the effect of host sex on

gut microbial community structures at all four age
stages. Although the samples harvested at 80 days of age
showed a slight difference in bacterial compositions be-
tween gilts and entire boars, we did not observe distinct
sex-biased bacterial compositions for samples at the
other three age stages in PCoA analysis (Additional file 3:
Figure S2). This should be due to the reasons of sexual
immuration for piglets at the age of 25 days and the
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castration for boars at 120 and 240 days. However, this
discrepancy may also be caused by the different ampli-
cons in 16S rRNA gene sequencing analysis for samples
at 80 days.

Longitudinal dynamics of enterotype-like clustering of
porcine fecal microbiota
We separately performed the enterotype-like clustering
analysis at each of four ages. As the result, two
enterotype-like clusters were identified for each age. Dis-
tinct from the enterotypes for pre-weaning piglets,

which were dominated by p-75-a5 and Fusobacterium,
respectively (enterotype 1 and 2), the enterotype clusters
for the pigs at 80, 120 and 240 days showed a high de-
gree of similarity and could be grouped into the other
two enterotypes that were overrepresented by Prevotella
and Treponema, respectively (enterotype 3 and 4) (Fig. 3).
The differential taxa of bacteria between the two entero-
types at each age are shown in Additional file 4: Figure
S3. To further investigate the discrepancy of the entero-
types between pre-weaning piglets and the pigs at the
other three ages, we constructed the SparCC network at

Fig. 1 Comparison of the diversity of gut microbiome among four ages. The gut microbial richness was estimated by observed species, chao and
ace index. The diversity was evaluated by Shannon and Simpson index. PCoA of the fecal bacterial communities was based on the Bray-Curtis
similarity matrix. (a) Observed species. (b) Chao. (c) ACE. (d) Shannon index. (e) Simpson index. (f) PCoA plot based on the Bray-Curtis similarity
matrix. Wilcoxon t-test was used to compare the richness and diversity of gut microbiota between two successive ages (NS: not significant,
*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001)

Fig. 2 Histograms of the relative abundances of gut microbial taxa at four ages. (a) At the phylum level. (b) At the genus level. The X-axis shows
the ages of the experimental pigs, and the Y-axis represents the relative abundances of bacteria
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the genus level in all four age groups (Additional file 5:
Figure S4). We observed that Fusobacterium and
p-75-a5 were not only the main drivers for the entero-
types at 25 days (Fig. 3A), but also the hub nodes in the
network (Additional file 5: Figure S4). However, Trepo-
nema was also overrepresented in the enterotype 1,
whereas Prevotella was more abundant in the enterotype
2 (Additional file 4: Fig. S3), and these two genera were
the other two hubs of the network at 25 days. Further-
more, Fusobacterium showed co-abundance with Prevo-
tella and co-exclusion with Treponema. This result
suggested that the gut microbiota in pre-weaning piglets
should not change completely with age, but only in-
creased the diversity. Some bacterial taxa gradually

dominated the bacterial composition by replacing the
initial predominant taxa following the age.
To evaluate the stability of enterotypes following the

age, we particularly checked the enterotype distribution
in pigs with fecal samples at more than one age. Of the
57 pigs having fecal samples at both 25 and 120 days
(Additional file 2: Fig. S1), twenty-three (40.35%) were
assigned to the Fusobacterium enterotype, and the
others (59.65%) were occupied by p-75-a5 enterotype at
25 days of age. However, at the age of 120 days, among
those pigs with Fusobacterium enterotype at 25 days of
age, sixteen (69.57%) switched their putative enterotypes
to Prevotella, and the others (30.43%) changed their
enterotypes to Treponema. A similar result was also

Fig. 3 Identification of enterotypes in a cohort of 935 experimental pigs at four ages. (a) 25 days. (b) 80 days. (c) 120 days. (d) 240 days. The
graphs for enterotype clusters indicate the first two principal coordinates of the Jensen-Shannon distances at different age groups based on the
relative abundance profiles at the genus level. Samples are colored by enterotypes as identified by the partitioning around medoids (PAM)
clustering algorithm. The percentage of variations explained by PC1 and PC2 are indicated in the X and Y axis, respectively. Boxes represent the
relative abundances of the main drivers in each enterotype
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obtained in pre-weaning pigs with p-75-a5 enterotype.
Twenty-six (76.47%) out of these piglets shifted the
enterotypes to Prevotella, whereas the left 23.53% of pig-
lets switched the enterotypes to Treponema at 120 days.
There were 377 pigs involved in the enterotype analysis
at both 120 and 240 days (Additional file 2: Figure S1).
Eighty-four (22.3%) pigs with Prevotella enterotype at
120 days switched their putative enterotypes to Trepo-
nema at 240 days. Inversely, 142 (37.7%) pigs having
Treponema enterotype changed the enterotypes to Pre-
votella at 240 days.

Dynamic changes of interaction networks of porcine fecal
bacteria with age
To evaluate the dynamic changes of potential interaction
networks among bacterial taxa at different ages, 273, 334,
351 and 322 key OTUs at the age of 25, 80, 120 and 240
days were used for constructing the phylogenetic inter-
action networks, respectively. Overall, in agreement with
the previous report [37], OTUs exhibited a various degree
of connectivity at each age. The complexity of the phylo-
genetic interaction networks reflecting in the average num-
ber of edges per node was increased from 25 (1.48) to 120
days (2.4), but no significant difference between 120 and
240 days (2.29). The stability (i.e. percentage of negative in-
teractions) was obviously increased from 1.0% at 25 days to
16.9% at 120 days. However, this percentage was decreased
to 8.9% at 240 days. The highest percentage of negative in-
teractions was identified at 80 days (21.4%). This continu-
ously declined percentage from the ages of 80 and 120 days
to 240 days suggested that the highest stability of gut mi-
crobial ecology was achieved before 120 days. However, we
could not exclude the influence of the smaller sample size
and the different amplicon in 16S rRNA gene sequencing
on the percentage of negative interactions for samples at
80 days. In more details, the interaction network of the gut
microbiota at the age of 25 days was comprised of 66 nodes
and 98 edges (Fig. 4A). This phylogenetic interaction net-
work was mostly divided into three distinct modules, in-
cluding two piglet-specific modules (module 1 and 3). The
nodes in the module 1 were mainly annotated to Lepto-
nema, PSB-M-3, Shewanella, Pseudomonas and Sulfuros-
pirillum (Additional file 6: Table S2). These bacterial genera
are mainly involved in the utilization of carbohydrate in diet
milk [38–41]. The module 2 was comprised of Sphaero-
chaeta (Additional file 6: Table S2) which can produce a di-
verse set of saccharolytic enzymes that participate in the
glycolytic and pentose phosphate pathways [42]. Based on
the overlapping structures and topological features (Fig. 5
and Additional file 7: Figure S5), this module was also pre-
sented at 120 (module 3) and 240 (module 3) days of age.
Module 3 contained the bacteria that mainly takes part in
the utilization of the lactose and glutamic acid (Additional
file 6: Table S2) [43–46]. The interaction network at the age

of 80 days was comprised of 129 nodes and 350 interac-
tions. Three modules were identified in this network (Fig.
4B). Most of the nodes in this co-occurrence network
belonged to the genera Blautia, Faecalibacterium, Prevo-
tella, Ruminococcus and Treponema (Additional file 6:
Table S2). These microbes are mainly involved in the diges-
tion of dietary polysaccharides (e.g. fiber, cellulose and lig-
nin) and the production of significant amounts of short
chain fatty acids (SCFAs) [5, 47–49].
The interaction network at the age of 120 days was com-

prised of 150 nodes and 360 edges, and mainly divided
into three modules (Fig. 4C). Based on the topological fea-
tures, the module 1 and 3 were highly similar to the mod-
ule 2 at the age of 240 days and the module 2 at the age of
25 days, respectively (Fig. 5 and Additional file 7: Figure
S5). The module 2 consisted of Prevotella and Bacteroides
(Additional file 6: Table S2), which play essential roles in
the process of the degradation of complex dietary polysac-
charides and amino acid metabolism [47, 50, 51]. The
interaction network at the age of 240 days was comprised
of 142 nodes and 325 edges. Three distinct modules were
identified in this co-occurrence network (Fig. 4D), and
only the module 1 which was primarily comprised of the
bacteria related to dietary protein metabolism (e.g. Ceto-
bacterium somerae, Coprococcus eutactus, Mycobacterium,
CF231, Comamonas, Ralstonia, Sporosarcina and Nitrin-
cola) was unique to this network [52–59]. The modules 2
and 3 were highly similar to the modules identified at 120
(module 1) and 25 days (module 2), respectively.

Longitudinal dynamics of predicted function capacity of
fecal microbiome
To investigate the dynamic changes of the potential
function capacity of fecal microbiome with age, the rela-
tive abundances of KEGG pathways were predicted by
PICRUST based on 16S rRNA gene sequences. A total
of 39 KEGG pathways showed significantly different en-
richments at different ages (P < 0.05, Fig. 6). Eleven out
of these 39 KEGG pathways were significantly enriched
in pre-weaning piglets (Additional file 8: Table S3), in-
cluding carbohydrate metabolism, energy metabolism,
and xenobiotics biodegradation and metabolism. There
were four KEGG pathways showing significant enrich-
ments at the age of 80 days, including enzyme families,
metabolism, nervous system and transcription (P <
0.001). We also detected one (folding, sorting and deg-
radation, P < 0.01) and four (amino acid metabolism,
endocrine system, excretory system, and transport and
catabolism, P < 0.001) pathways that were significantly
enriched at 120 and 240 days, respectively. Furthermore,
the relative abundances of cell motility and amino acid
metabolism were significantly increased following the
age (P < 0.001), whereas the relative abundance of mem-
brane transport was decreased with age (P < 0.001).
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Discussion
Several studies have reported the age-related gut microbial
shifts in pigs [16, 60–62]. However, to our knowledge,
there are few studies about the dynamic shifts of
enterotype-like clusters and interaction networks of gut
microbiota following the age in an experimental pig co-
hort with large sample size. In this study, we explored the
longitudinal changes of gut microbial composition, enter-
otypes, co-occurrence interaction network and potential
function capacity following the age in an experimental co-
hort comprised of 953 pigs. Especially, most of the experi-
mental pigs were continuously collected fecal samples at
more than one age. Our study provided an integrated
overview of longitudinal changes of the porcine gut
microbiome.

In accordance with the previous studies [63, 64], the
dominant bacterial phyla in porcine fecal microbiota
throughout the experimental period were Firmicutes and
Bacteroidetes. The age-based dynamic changes of the rela-
tive abundance of Bacteroidetes were mainly contributed
by Bacteroides and Prevotella. The decreased percentage
of Fusobacteria was mainly caused by reduced abundance
of Fusobacterium, while the variation of Spirochaetes was
a result of increased abundance of Treponema. In agree-
ment with the previous reports [16, 62, 65, 66], Proteobac-
teria was relatively more abundant in the gut of piglets,
but its relative abundance was considerably decreased in
the adulthood. The relative abundances of opportunistic
pathogens (e.g. Actinobacillus and Helicobacter) might be
reduced following the maturation of pig gut microbiota. It

Fig. 4 The phylogenetic co-occurrence networks of porcine fecal microbiota at four ages. The networks were constructed at the OTU level. (a)
25 days. (b) 80 days. (c) 120 days. (d) 240 days. The size of the nodes shows the abundance of OTUs, and the different colors indicate the modules
within networks. The same color shows the similar modules. Edge color represents positive (green) and negative (red) correlations. The edge
thickness indicates the correlation values, only the high-confidence interactions with absolute sparse correlations more than 0.55 were selected
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has also been demonstrated that a high diversity of gut
microbiota is generally considered related to the host
health and fitness, and it is also regard as the sign of the
maturation of gut microbiota [67, 68]. We found that the
richness of fecal microbiota was continuously increased
following the age in this study.
Consistent with the findings from previous report [61],

two enterotype-like clusters were identified at each age.
Fusobacterium and p-75-a5 were the main drivers of the
enterotypes in pre-weaning piglet. The genus p-75-a5 was
a member within the family Erysipelotrichaceae, which
was highly correlated with the digestion of protein and fat
[69]. As we have well known, milk contained high concen-
tration of protein and fat is the main diet for piglets. It has
been reported that Fusobacterium was associated with
some diseases in animals [70], indicating that opportunis-
tic pathogenic bacteria were commonly presented in suck-
ling piglets. Our data coincides with the fact that the
piglet has an immature immune system and thus is unable
to manage and control the parasitic invaders [71]. March
et al. reported that Ruminococcaceae was the main driver
for the only enterotype-like cluster in the 14-day-old
suckling pigs [61]. This discrepancy may be caused by the
different environments, diets and pig breed [72, 73].

Prevotella and Treponema were the main drivers of the
enterotypes at 80, 120 and 240 days. The previous report
also found that Prevotella and Treponema were the main
drivers for the enterotypes of pigs at 60 days of age [37].
Prevotella is capable of metabolizing dietary polysacchar-
ide and producing large amounts of SCFAs [74]. Trepo-
nema plays an essential role in cellulose and lignin
degradation [48]. This result suggested that the gut micro-
biota was mature when the age of pigs was above 80 days,
and its ability digesting diet polysaccharide was improved.
The enterotypes in pre-weaning pigs did not remain stable
(see Results). Surprisingly, the enterotypes did not keep
stable even in some adult pigs, e.g. more than 22.3% of
pigs with Prevotella enterotype at 120 days showed Trepo-
nema enterotype at 240 days. It has been reported that
Prevotella enterotype may be better adapted to the diet for
growing pigs which contains more plant polysaccharides
[37]. In this study, the diets provided to the pigs at 120
and 240 days of age contained slight difference of coarse
fiber levels (increased from 5 to 8%) (Additional file 1:
Table S1). Costea et al. also reported that although all
three enterotypes of human gut microbiota kept stable in
overall, 16% of individuals switched putative enterotypes
between visits [75].

Fig. 5 The venn diagram showing the similarity of the main modules in the networks of porcine gut microbiota at different ages based on the
number of overlapping nodes and edges. (a) The numbers of overlapping nodes among the module 2 at 25 days, module 3 at 120 days and 240
days. (b) Overlapping edges among the module 2 at 25 days, module 3 at 120 days and 240 days. (c) Overlapping nodes between the module 1
at 120 days and module 2 at 240 days. (d) Overlapping edges between the module 1 at 120 days and module 2 at 240 days
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The scale, complexity and stability of the phylogenetic
co-occurrence network at 25 days of age were lower than
that at the other three ages, but the networks at 120 and
240 days were highly similar. This was consistent with the
result of enterotype analysis, which suggested an unstable
structure of fecal microbial community in pre-weaning pig-
lets. The gut microbial ecology would remain stable once
the gut microbiota achieves maturation although it may be
fluctuations in populations [4]. The main modules in the
co-occurrence network of piglets were associated with the
utilization of simple carbohydrate (module 1) and lactose
(module 3). It is well known that sow milk was the main
source of nutrients for suckling piglets. The module com-
monly identified at 25 (module 2), 120 (module 3) and 240
(module 3) days of age was comprised of Sphaerochaeta
which has been reported to take part in glucose metabolism
through glycolytic and pentose phosphate pathways [42,
76]. This result suggested that glycolytic and pentose phos-
phate pathways of gut microbiome were essential for pigs
throughout the whole-life span. However, this module was
absent in the network at 80 days. This discrepancy may be
caused by the smaller sample size and the different sequen-
cing region of 16S rRNA gene. Several modules identified
at 80, 120 (module 1 and 2) and 240 (module 2) days were
related to the digestion of nondigestible carbohydrates and
the production of SCFAs [5, 49], suggesting that the gut
microbiota above the age of 80 days obtained the functional
capacity of digesting dietary fiber. The modules involved in

the metabolism of dietary protein and amino acids were
identified at 120 (module 2) and 240 (module 1) days, indi-
cating that the functional capacity of gut microbiome
digesting dietary protein had been significantly improved
since the age of 120 days.
Consistent with the result observed in the interaction

network analysis, the KEGG pathways enriched in pig-
lets were related to carbohydrate and energy metabol-
ism. This may be due to the high fat and carbohydrate
concentration of sow milk diet. The functional capacities
of cell motility and amino acid metabolism were in-
creased with ages. Cellular motility is essential for bio-
logical processes, such as the development and immune
response [77]. As mentioned above, the abilities of im-
mune response and amino acid metabolism of gut
microbiome were increased following the age.

Conclusions
The present study demonstrated the dynamic changes of
the phylogenetic composition, enterotypes, interaction
networks and potential functional capacity of porcine gut
microbiome following the age. These longitudinal changes
of gut microbiome contribute to the metabolism of diet
nutrients and the maturation of immune system in pigs.
The results provide meaningful biological insights into the
age-based dynamic shifts of ecological community of por-
cine gut microbiota and provide valuable knowledge about
establishment and maturation of gut microbiome.

Fig. 6 Heatmap for comparing the functional capacities of fecal microbiome among four ages. The color of the bars in the panel represents the
relative abundances of the KEGG pathway in each age
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