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Abstract 

Inherited and acquired muscle diseases are an important cause of morbidity and mortality in human medical and vet‑
erinary patients. Researchers use models to study skeletal muscle development and pathology, improve our under‑
standing of disease pathogenesis and explore new treatment options. Experiments on laboratory animals, includ‑
ing murine and canine models, have led to huge advances in congenital myopathy and muscular dystrophy research 
that have translated into clinical treatment trials in human patients with these debilitating and often fatal conditions. 
Whilst animal experimentation has enabled many significant and impactful discoveries that otherwise may not have 
been possible, we have an ethical and moral, and in many countries also a legal, obligation to consider alternatives. 
This review discusses the models available as alternatives to mammals for muscle development, biology and disease 
research with a focus on inherited myopathies. Cell culture models can be used to replace animals for some applica‑
tions: traditional monolayer cultures (for example, using the immortalised C2C12 cell line) are accessible, tractable 
and inexpensive but developmentally limited to immature myotube stages; more recently, developments in tissue 
engineering have led to three-dimensional cultures with improved differentiation capabilities. Advances in computer 
modelling and an improved understanding of pathogenetic mechanisms are likely to herald new models and oppor‑
tunities for replacement. Where this is not possible, a 3Rs approach advocates partial replacement with the use 
of less sentient animals (including invertebrates (such as worms Caenorhabditis elegans and fruit flies Drosophila mela-
nogaster) and embryonic stages of small vertebrates such as the zebrafish Danio rerio) alongside refinement of experi‑
mental design and improved research practices to reduce the numbers of animals used and the severity of their 
experience. An understanding of the advantages and disadvantages of potential models is essential for researchers 
to determine which can best facilitate answering a specific scientific question. Applying 3Rs principles to research 
not only improves animal welfare but generates high-quality, reproducible and reliable data with translational rel‑
evance to human and animal patients.
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Introduction
“To move things is all that mankind can do, and for this 
the sole executant is a muscle, whether it be whispering 
a syllable or felling a forest.” This quote from Charles 
Sherrington describes the crucial role of the neuromus-
cular system in the biology of humans and other ver-
tebrates. Skeletal muscles are architecturally complex 
tissues specialised to generate movement in response 
to stimulation; they account for 30—40% of total body 
mass in mammals (up to two-thirds in some species of 
fish) and consume much of the body’s energy demand. 
Contraction is actuated by acetylcholine release from 
peripheral motor neuron terminals at the neuromus-
cular junction, resultant opening of ligand-gated ion 
channels leads to depolarisation of the sarcolemma and 
a muscle action potential. Myofibres are highly devel-
oped to respond to this depolarisation by contracting 
in a timely, coordinated manner and thereby transmit 
force to the bones of the skeleton via the extracellular 
matrix [1, 2].

Disorders of muscle can be inherited or acquired, 
acute or chronic, focal or generalised and are an impor-
tant cause of morbidity and mortality in human medical 
and veterinary patients [3, 4]. Clinical signs of myopa-
thies can be variable and include debilitating muscu-
lar weakness leading to paresis of limb, postural and/
or respiratory muscles; other symptoms may include 
exercise intolerance, fatigue, myalgia or muscle cramps 
and muscle atrophy, hypertrophy or contracture [4, 5]. 
Inherited myopathies, which will be the focus of this 
narrative review, comprise a large number of disparate 
genetic conditions that predominantly affect skeletal 
muscle structure, metabolism or ion channel functions 
[4, 6]. The prevalence of inherited myopathies, col-
lectively affecting approximately 1 in 6,000 individu-
als worldwide, underscores their significant impact on 
global health and individual quality of life [7].

A knowledge of the biology of the tissue affected and 
a thorough understanding of disease pathogenesis are 
important foundations for developing effective treat-
ments for any condition. All models used to study 
disease have advantages and limitations; however, an 
understanding of all available options, including com-
putational and in-vitro models and less sentient animals 
than mammals (such as invertebrates or embryonic 
stages), will allow investigators to determine the best 
way to answer their particular research question. The 
aim of this review is to discuss the 3Rs principles and 
describe alternative models to replace or reduce the use 
of mammals for research into inherited myopathies and 
other muscle disorders.

Inherited myopathies: muscular dystrophies 
and congenital myopathies
Duchenne muscular dystrophy (DMD), an X-linked dys-
trophinopathy, is the most widely known inherited myo-
pathy and the most common lethal inherited disease in 
humans worldwide [8]. In addition, there are over 60 
muscular dystrophies recognised in humans that are 
characterised by similar degenerative, non-inflammatory 
pathology, and many are attributed to genetic defects 
affecting structural proteins of the sarcolemma and 
extracellular matrix [4, 9]. Congenital myopathies are 
rare structural myopathies, typically presenting in chil-
dren, with distinctive morphologic abnormalities within 
myofibres that allow classification based on pathological 
features [4, 10]. These disorders exhibit significant phe-
notypic heterogeneity, sometimes even within genotypes, 
varying in inheritance pattern, age of onset, clinical signs, 
muscle pathology and rate of progression; hence, molec-
ular diagnosis is the gold standard [11, 12].

Inherited myopathies are also increasingly being rec-
ognised and genetically characterised in veterinary 
patients due to improvements in molecular testing and 
greater access to whole genome and exome sequencing. 
Dystrophin deficiency (analogous to DMD) has been 
reported in cats and numerous breeds of dog [13–18], 
and other muscular dystrophies with mutations affecting 
α2-laminin, sarcoglycans, collagen 6 and α-dystroglycan 
have also been described [15, 19–21]. Dogs are unique, 
as the process of artificial selection to produce such a 
variety of different breeds in our domestic dog popula-
tion has led to particular breed-associated traits and 
disorders in these closed populations [22, 23]. Centronu-
clear myopathies (CNM) are rare congenital myopathies 
in humans; however, the mutation causing autosomal 
recessive HACD1-CNM is disseminated in the Labrador 
breed [24], and other recessive, X-linked and autosomal 
dominant forms have been reported in Great Danes, Lab-
rador Retrievers and Border Collies respectively [25–27].

Animal models for inherited myopathy research
The last decade has seen dramatic advances in our under-
standing of the pathogenesis of muscular dystrophies [8, 
28, 29] and congenital myopathies [30, 31], and, whilst 
there is still no cure for these debilitating and fatal condi-
tions, several promising therapeutic candidates for spe-
cific disorders have entered clinical trials [32–36] or been 
licensed for use in the USA [37, 38]. This work would not 
have been possible without the use of animal models, 
particularly mice and dogs [18, 39–41]. Mice are the most 
widely used model organism – as mammals, they share 
similarities in terms of anatomy, physiology and genet-
ics to humans, and they have advantages of small size, 
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short life span and rapid reproduction. The first murine 
muscular dystrophy model mdx was discovered over 40 
years ago as a naturally occurring dystrophin mutation in 
a research colony of C57Bl6 mice [42]; however, there are 
now over 60 mutant and transgenic mouse models used 
for DMD research alone [43]. The phenotype in many 
murine myopathy models is relatively mild, and there 
is a well-recognised translational gap between rodent 
research and clinical trials in human patients, particu-
larly in the context of gene therapy [41, 43, 44]. Canine 
models are more limited to naturally occurring diseases; 
however, there are now several muscular dystrophy and 
congenital myopathy-associated mutations characterised 
in dogs and kept in research colonies [45–49]. Research 
on these large mammalian models has shown they can 
closely replicate the clinical features, disease progression 
and severity levels of the same conditions as in humans 
[18, 25, 41, 45, 46]. Dogs share the longest common his-
tory with humans and are closer than mice to humans in 
size, weight and complexity of organ systems [14, 22, 47, 
50]; therefore, results of therapeutic trials may be more 
translatable into human patients however, the experi-
mental design should account for phenotypic variability 
[46, 51]. Dogs are, in many societies, beloved working 
companions and family pets; hence, their use in research 
triggers more ethical debate than other animals [52, 53].

Our scientific and medical knowledge and, con-
sequently, human and animal health and well-being 
have undoubtedly benefited from the use of animals in 
research. Yet understandably, particularly concerning the 
use of sentient animals such as mammals, this remains 
a controversial and emotive topic; as researchers, we 
have an ethical obligation to consider the experience of 
any animals used in experiments and how to minimise 
harm and improve their welfare. The “3Rs” principles for 
humane experimental technique, an ethical framework 
for reducing animal use in research while improving 
laboratory animal welfare and quality of research [54], 
are accepted worldwide, and consideration is a moral 
imperative and required by legislation, grant awarding 
bodies and scientific journals in many countries [55]. 
There are, however, numerous other disadvantages to 
mammalian models in addition to the ethical considera-
tions. Their use is tightly regulated—in the UK, the use 
of protected animals is regulated by the Home Office and 
requires licensing of breeding facilities, research prem-
ises, researchers and the projects themselves [56]. Main-
taining and housing breeding colonies of rodents and 
other mammals, therefore, requires specialised facilities 
and is costly. Rodents and the majority of other mam-
mals undergo gestation in utero which has obvious dis-
advantages for developmental studies in comparison 
with organisms whose embryonic stages can be directly 

accessed for interventions and observations. Additional 
considerations include exposure to animal allergens, 
which are common respiratory sensitisers. Traditional 
animal facilities are also costly in terms of environmental 
impact from energy usage and generation of waste mate-
rials [57].

3Rs: replacement, reduction and refinement
Some of the first legislation on animal welfare, includ-
ing the UK’s 1876 Cruelty to Animals Act [58], regulated 
vivisection and this remains a complex and emotive sub-
ject. The Universities Federation for Animal Welfare was 
established in 1926 to work with academics and other 
stakeholders using a scientific approach to improve 
the welfare of animals used in research by addressing 
husbandry and experimental techniques. Their work 
was instrumental in bringing about many important 
improvements in laboratory animal care and manage-
ment, anaesthesia and regulation of experiments, includ-
ing proposing replacement, reduction and refinement as 
part of The Principles of Humane Experimental Tech-
nique [54]. Over the subsequent decades, the 3Rs have 
been internationally accepted as guiding principles and 
received support from the scientific community and pub-
lic opinion; their consideration is enshrined in legislation 
in many countries throughout the globe and required for 
relevant grant applications and publications [59–62]. The 
NC3Rs, a UK-based scientific organisation established 
20 years ago, have updated the original definitions of the 
3Rs to align more closely with modern research practices 
(Table 1) [63].

Replacement, the first of the “R”s and the focus of 
this article, as originally proposed by Russell and Burch, 
states “the substitution for conscious living higher ani-
mals of insentient material” [54], i.e. with regards to 
animal experimentation, if non-sentient alternatives are 
available then they should be used. This is the first “R” 
to address as it will have the biggest impact on welfare 
by fully replacing animals with human volunteers or cel-
lular, mathematical, and computational models. This can 
remove the need for animal experimentation entirely. 
Where this is not possible, partial replacement consid-
ers preferentially using animals that are less sentient and, 
therefore, incapable of experiencing suffering. Which 
animals are considered sentient is another source of 
debate and controversy; however, the distinction is based 
on our current scientific knowledge, which is continually 
evolving based on new evidence (for example, decapods 
were recently included in the AW(S)A 2022) [65]. Precise 
definitions in legislation will vary however, in the UK, 
sentient species which are protected by A(SP)A (1986) 
include vertebrates and cephalopods such as octopuses 
and squid. The use of other invertebrates (such as flies 
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and worms) and immature forms of fish and amphibians 
(prior to the development of independent feeding) would 
be considered partial replacement, as would utilising pri-
mary cells and tissues from animals after euthanasia.

Reduction ensures that the minimum number of ani-
mals is used in each study in line with the scientific aims. 
The experimental design should ensure sufficient power 
for reproducible and statistically meaningful findings and 
robust conclusions. A consideration for many myopa-
thy models is phenotypic variability [41, 42, 46, 51, 66], 
therefore, this should be taken into account, and careful 
planning of measurements, cohort size and statistical 
analysis are crucial. Reduction may also include methods 
to maximise the useful information obtained per animal 
– for example, repeated blood samples, muscle biopsies 
or the use of live-imaging modalities such as magnetic 
resonance imaging in a longitudinal study may be prefer-
able to culling animals at specific time points (balanced 
against the welfare implications of repeated use). Publi-
cation of research (including negative findings), collabo-
rations and sharing of resources and data also reduces 
unnecessary replication. There are now several databases 
that facilitate the online sharing of “omics” data sets, 
including those managed such as EMBL’s European Bio-
informatics Institute (EMBL-EBI) [67].

Refinements to reduce suffering and improve animal 
welfare can be made to all aspects of animal use, from 
their husbandry and housing conditions to their experi-
ence during experimental procedures. This is important 
not just from a welfare and ethical perspective but also 
can impact the validity, reliability and reproducibility 
of studies as pain and stress have measurable effects 
on behaviour and physiology that can affect scientific 
results yet may not be externally apparent, particularly 
in prey species.

Since their inception, these principles have provided 
a framework for ethical animal research and are now 
embedded in the policies of national and international 

bodies and organisations that regulate, fund, conduct 
and publish research. The 3Rs should be considered 
whenever animals are to be used for research in order 
to ensure best practice in terms of responsible animal 
use, welfare and scientific methodology. Furthermore, 
in order to maintain transparency, the reporting of 
studies involving animals should meet certain stand-
ards. The ARRIVE guidelines (Animal Research: 
Reporting of In Vivo Experiments) by NC3R provide a 
list of recommendations to improve animal reporting in 
order to maximise the quality, reliability, and reproduc-
ibility of research without unnecessary animal use in 
the future [68, 69].

In the context of muscle development and inherited 
myopathies, there are a number of alternative models 
which can replace and/or reduce the use of mammals 
for research. Here, we will discuss several of the most 
promising and widely used: cell culture models, com-
putational modelling, invertebrates and embryonic 
zebrafish (compared in Table 2).

Muscle in a dish – in vitro models
Cultured myoblasts
Cell culture models are commonly used to evaluate the 
development and pathophysiological mechanisms due to 
their low cost and ease of imaging and genetic manipula-
tion; therefore, establishing and interpreting experiments 
in these isolated systems can be relatively inexpensive 
and straightforward. Established immortal myoblast cell 
lines from mice (C2C12) [70, 71], rats (L6) [72] and dogs 
(MyoK9) [73] are readily available and ethical replace-
ments for animal models. Cell culture models also 
include immortalised and primary cells derived from the 
muscles of human patients [74] and animals; however, 
from a 3Rs perspective, the latter would be considered a 
partial replacement.

Primary myoblast cultures are formed from satel-
lite stem cells within muscle samples, which become 

Table 1  Definitions of the 3Rs (replacement, reduction and refinement) in animal research. Table adapted from [64] with original 
definitions by Russell and Burch [54]

Original Basic Updated

Replace‑
ment

The substitution for conscious living 
higher animals of insentient material

Avoiding or replacing the use of ani‑
mals in areas where they otherwise 
would have been used

Accelerating the development and use of predictive 
and robust models and tools, based on the latest science 
and technologies, to address important scientific ques‑
tions without the use of animals

Reduc‑
tion

Reduction in the number of ani‑
mals used to obtain information 
of given amount and precision

Minimising the number of animals 
used consistent with scientific aims

Appropriately designed and analysed animal experi‑
ments that are robust and reproducible, and truly add 
to the knowledge base

Refine‑
ment

Any decrease in the severity of inhu‑
mane procedures applied to those 
animals, which still have to be used

Minimising the pain, suffering, distress 
or lasting harm that research animals 
might experience

Advancing research animal welfare by exploiting the lat‑
est in vivo technologies and by improving understand‑
ing of the impact of welfare on scientific outcomes
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activated and proliferate [75]. These direct cultures 
retain many characteristics of the target tissue; how-
ever, they are relatively delicate cells, difficult to main-
tain and differentiate in culture, and they have a finite 
lifespan with limited capacity for proliferation; thus, 
they are impractical for studies requiring repeatable 
high-volume data [76, 77]. Conversely, myoblast cell 
lines that are immortalised (for example, by modifying 
telomerase activity or manipulating cell cycle check-
points) can proliferate indefinitely, but genetic abnor-
malities can build up over time, leading to divergence 
of cellular behaviours from those observed in vivo [78, 
79]. The murine C2C12 cell line [70, 71] is the most 
widely used of these and has been a cell culture work-
horse for researchers of muscle development and biol-
ogy for nearly four decades; they are easy to maintain, 
can rapidly and continuously proliferate in the correct 
conditions and then be induced to differentiate into 
myotubes for experiments as required (Fig. 1) [80].

Genetic manipulation is straightforward in cell cul-
ture (although transfection efficiencies are lower in myo-
blasts than some other cell types), and genetic material 
can be introduced into cells to cause transient or stable 
over-expression of mutant or tagged proteins, reduced 
expression or targeted genome editing [80–82]. For elec-
trophysiological studies of channelopathies, including 
RyR1-related myopathies, cells without muscle-specific 
proteins can be advantageous, and HEK cells are com-
monly used [83]. Another strategy for disease model-
ling is to use cells taken from patients, thereby allowing 

researchers to study the disorder in its original genetic 
context and evaluate a range of mutations. However, 
human muscle biopsy samples are rare; therefore a plat-
form for immortalisation of human myoblasts and MyoD 
transformation of fibroblasts has been established by the 
Institut de Myologie with over 130 disease models of 27 
myopathies established to date alongside controls [74, 
84]. Another potential source of human muscle cells is 
via induced pluripotent stem cells (hiPSC) [85, 86], which 
can be sourced from skin, blood and, more recently, urine 
[87]. This technology overcomes some of the disadvan-
tages of patient muscle samples as they are highly prolif-
erative and easily accessible.

The effectiveness of any in-vitro model relies on the 
origin and functional and structural maturity of its cells 
in comparison with the tissue being studied [88]. Skeletal 
myofibers are large, highly organised, multinucleate cells 
formed following a complex, multistep process controlled 
by sequential expression of myogenic regulatory and 
other transcription factors. First, proliferating myoblasts 
leave the cell cycle; they then elongate, migrate and align 
prior to fusion to form multinucleated myotubes and the 
assembly of striated myofibrils [89] (Fig.  1). Terminally 
differentiated muscle is challenging to study in  vitro; 
however, myogenic cells grown in monolayer cultures 
can be readily differentiated into an intermediate myo-
tube stage and have been used extensively to research 
early myogenesis and myopathies, leading to important 
insight into disease mechanisms for numerous condi-
tions. For example, Blondelle et al., used Hacd1-deficient 

Table 2  Comparison of alternative models for muscle development and inherited myopathy research. Created in BioRe​nder.​com

https://www.BioRender.com
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C2C12 to demonstrate altered lipid composition and 
impaired fusion as a cause of myofibre hypotrophy in 
CNM [90]. Genetically modified [82] or patient-derived 
primary and immortalised lines have been used to model 
several muscular dystrophies [74, 91–93] and in the field 
of personalised medicine, they have shown promise as a 
tool for disease modelling and drug screening: for exam-
ple, evaluating the efficacy of antisense oligonucleotide 
exon-skipping and CRISPR/Cas9 genome editing strate-
gies for DMD [94, 95]. Currently, iPSCs have been gen-
erated and validated for an array of muscular diseases, 
demonstrating their potential value for disease modelling 
and research  [95–101]. Recently, micropatterned plates 
were used to establish primary myotube cultures in a 
high-throughput screening and drug discovery platform 
with quantitative phenotypic and functional outputs for 
myogenesis and hypertrophy/atrophy [102].

Such monolayer or 2D cell cultures are simple, inexpen-
sive and user-friendly but their physiological relevance 

may be limited depending upon the research question 
being posed as they often fail to mimic the structural and 
functional complexity of mature muscles. Several meth-
ods have been described, including co-cultures, electri-
cal or mechanical stimulation and 3D culture techniques, 
leading to improved myogenic differentiation in  vitro 
models [103–106].

Three‑dimensional cell culture
In recent years, significant advancements have been 
made in three-dimensional (3D) cell culture techniques, 
aiming to faithfully replicate the in-situ functioning of 
living tissues and overcome the limitations of 2D or mon-
olayer cell culture. Common 3D cell cultures include 3D 
hydrogels, organoids, 3D bioprinting and organ-on-chips 
models and approaches are divided into scaffold-based 
and non-scaffold-based culture methods.

Scaffold-based methods involve introducing an artifi-
cial synthetic natural extracellular matrix (e.g., Matrigel, 

Fig. 1  Myogenesis is a multi-step process regulated by a cascade of transcription factors. A Lineage specification of progenitors 
under the influence of Pax3/7 precedes expression of muscle regulatory factors (MyoD and Myf5), which commit cells and begin muscle 
differentiation by promoting expression of Mrf4 and Myogenin. Myoblasts, originating from the mesoderm, enter the cell cycle and proliferate. 
Upon withdrawal of growth factors, proliferating myoblasts exit the cell cycle and begin to differentiate: Myogenin and MRF4 are crucial in this 
step promoting elongation and fusion with neighbouring cells to form multinucleated myotubes. The myotubes begin to express muscle-specific 
proteins, such as cytoskeletal proteins (including sarcomeric myosin and α-actin), muscle creatine kinase (MCK) and ryanodine receptor 1. Mature 
muscle contains myofibres and a subset of progenitors forming the quiescent satellite cell niche, which can be activated for muscle regeneration. 
B Phase contrast images of C2C12 myoblasts (left) and myotubes differentiated to 7 days (right). C RYR1 immunocytochemistry with nuclear 
stain DAPI in C2C12 differentiated into myotubes at 8 days of serum starvation – note these are not organised as in mature myofibres. (Scale 
bar represents 50 μm). Created in BioRe​nder.​com

https://www.BioRender.com
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Collagen, Gelatin, Alginate, Polyglycol Acid, Polyethylene 
Glycol) to myoblasts to replicate the native mechanical 
environment [107]. Falcone et al., developed a 3D culture 
method for producing highly differentiated mature myo-
tubes to evaluate myonuclear positioning in CNM—they 
were able to achieve sarcomeric patterning, t-tubules and 
peripherally located nuclei using primary murine myo-
blasts differentiated within a 3D gel of proteins replicat-
ing the extracellular matrix (Matrigel, BD Biosciences) 
during agrin treatment to stimulate the organisation of 
post-synaptic neuromuscular junctions [108]. Engineered 
culture substrates have also been beneficial in allow-
ing improved differentiation and, therefore, modelling 
of patient-specific muscular dystrophy phenotypes and 
treatment responses [109].

Organoids are multicellular self-organised constructs 
derived from stem cells (including iPSC or ESC and pri-
mary tissues) that mimic the structure, cellular architec-
ture and processes of the target organ [110]. Significant 
progress has been made in the creation of iPSC-induced 
muscle organoids [111–116]. For example, Mavrommatis 
et  al. reported a gradual transition of early muscle pro-
genitor cells (Pax3/7) to myotubes (MYH3) in a step-
wise manner in iPSC-derived organoids [112]. Similarly, 
another study demonstrated hPSC-induced myogenesis 
and documented the presence of non-dividing satellite 
cells throughout differentiation that were later activated 
upon damage [113].

Further increasing complexity is organ-on-chip mod-
els (OOC), which combine 3D-engineered tissue within 
a microfluidic system to resemble in  vivo organ-level 
physiology and pathophysiology. Unlike organoids, which 
form by random assembly of cells, the structure of OOCs 
is determined by deliberate planning of components such 
as biophysical and biochemical factors and cell num-
bers and types based on their physiological functions 
and relevance for disease [117, 118]. The tightly con-
trolled microenvironment in OOC offers advantages for 
pharmacology studies and they permit high-resolution 
and real-time imaging, vascularisation, and diffusion of 
nutrients [119]. In the last few years, several studies have 
exploited microfluidic platforms to create muscle-on-a-
chip models [120–122]. OOC technology can also allow 
us to study the interaction between several tissues or 
multiple organs, more closely modelling a whole animal 
[123, 124].

Computational models
The use of in silico models to simulate and study com-
plex biological systems has revolutionised life sciences 
research since the beginning of the twenty-first cen-
tury. These have been driven by an almost exponential 
increase in computer processing speed. Storage space 

prices have dropped by equal measure, allowing the pro-
cessing of vast datasets, including thousands of genes, 
simultaneously from thousands of cells [125]. Develop-
ment of parallel processing (utilizing multi-core CPUs) 
and redeployment of graphical processing units (GPUs) 
with potentially thousands of processing cores, originally 
developed for the gaming industry, have also brought in 
the practical application of modelling techniques and 
machine learning models that were once theoretical, but 
now realistically achievable.

Such models now leverage mathematical and compu-
tational techniques to detect causal relationships, predict 
disease progression, treatment outcomes, and underly-
ing interaction between different disease mechanisms 
and to identify potential biomarkers. Systems biology 
approaches aim to integrate information on protein inter-
actions and molecular pathways up to whole organisms 
and their environment and predict their behaviour [126]. 
Predictive computation models have aided researchers in 
generating hypotheses and provide insight into cellular, 
pathogenetic and therapeutic mechanisms [127]. Since 
the BioModels repository was established in 2005 [128], 
there has been a vast expansion in the number of pub-
lished and curated models available to researchers [129].

Several mathematical models have been developed to 
model mechanical aspects of skeletal muscle structure 
and contractile function in health [130–132] and also 
DMD, where a finite elements model was able to show 
which DMD-like changes in cell membrane and extra-
cellular matrix properties lead to increased damage sus-
ceptibility [133]. Similarly, dynamical systems (ordinary 
differential equation-based) mathematical models have 
been applied to explore mdx mouse models of DMD 
[134, 135] explaining how the immune response can 
contribute to both muscle degeneration and regenera-
tion. More recent, agent-based modelling is also a pow-
erful simulation technique, where individual molecules 
are treated as individual “agents” with their own inher-
ent rules and interactions [136]. As computer power 
grows, these have an increasing potential to model com-
plex biological interactions [137]. For example, Virgillio 
et  al. attempted to model many of the known pathoge-
netic mechanisms in DMD, including membrane fragil-
ity and altered inflammatory, fibroblast and satellite cell 
functions to predict the role of the microenvironment 
in the impaired regenerative response [138]. Using this 
modelling approach the authors were able to quantify the 
natural variability in muscle and establish parameters for 
potential treatment approaches aimed at cellular protec-
tion and functional preservation, which, paradoxically, 
can oppose each other.

Like all models, in silico models have their limita-
tions; however, as they are based on known experimental 
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results, and therefore, whilst they can incorporate many 
variables, the model is only as accurate and comprehen-
sive as the data used. Developing these models also often 
involves some animal tissue data for early parameterisa-
tion. As this is an emerging field, there is limited research 
into the use of computational models for myopathy 
research specifically; however, the potential for computer 
models to replace animals in neuroscience research was 
recently reviewed [139] and found several areas from 
protein structure to behaviour where computational 
models performed well. The potential impact and util-
ity of these models in the future are likely to grow with 
improved computer models and a further understanding 
of muscle biology and pathology.

Invertebrates
Drosophila
The fruit fly, Drosophila melanogaster, has over a cen-
tury-long history of use as a model organism in biological 
research and are well-established model for genetics and 
development, including muscle [140, 141]. Invertebrates 
such as Drosophila and Caenorhabditis elegans (covered 
below) represent some of the most simple and cost-effec-
tive model animals. They have numerous advantages, 
including a short life span, rapid sexual maturity (within 
10 days for Drosophila), and the ability to produce a large 
number of progeny, allowing for large-scale experiments 
and fast progress [142]. The Drosophila genome is well-
defined and relatively small (approximately 165 million 
bases encoding 14,000 genes versus around 3,400 million 
bases and 22,500 genes in humans) as there is less redun-
dancy than in mammals – around 60% is homologous to 
the human genome, and 65–75% of disease-associated 
genes in humans have homologs in these flies [143–147].

Flies have multinucleate myofibers under neuronal 
control at the neuromuscular junction (NMJ) similar to 
that seen in mammals—although their neuronal circuitry 
is highly simplified, and the neurotransmitter at the 
fly NMJ is glutamate [148]. Their muscle development 
occurs in two phases: the first occurs during embryonic 
development, forming the body wall muscles needed for 
larval crawling (this musculature undergoes histolysis 
during metamorphosis), and the second stage of myogen-
esis generates muscles of the adult fly. Myoblasts form-
ing both embryonic and adult muscles develop together 
during early embryogenesis. Whilst some leave the cell 
cycle to differentiate and create larval muscles, the adult 
muscle precursors continue proliferating and differenti-
ate later during metamorphosis (pupal stages) [149, 150]. 
Both larval somatic muscles and adult-indirect flight 
muscles have been studied extensively, revealing simi-
larities in both structure and core myogenic processes, 
including cell fusion and myofibrillar assembly, between 

mammalian and Drosophila muscles [151–154]. Myo-
nuclei are positioned internally, unlike the peripherally 
located nuclei in mammalian muscle; however, nuclear 
positioning mechanisms appear to be somewhat con-
served [155]. It was long thought that adult Drosophila 
muscles had limited regeneration capacity until the dis-
covery of muscle stem cells relatively recently [156, 157].

The Drosophila genome has been sequenced and is 
well-annotated (the first assembly was published in 
2020 [158]. A large, groundbreaking collaborative com-
putational and experimental approach was used by the 
Drosophila research community to define functional ele-
ments and regulatory circuits [159] with a large reposi-
tory of genetic and molecular data maintained at FlyBase 
[160]. There is an extensive and well-defined toolkit for 
genetic manipulation [146]. Early developmental stud-
ies used mutagenic screens, but the development of the 
P-element transformation vector allowed more pre-
cise manipulation and insertion of genetic material into 
the germline [161]. An extension of this, the GAL4/
UAS expression system allows researchers to insert an 
RNAi construct or transgene into safe, well-character-
ised locations in the genome, allowing for gene silenc-
ing or expression respectively at specific developmental 
time points or in particular tissues [162]. Now, there is 
an array of readily available tools, including libraries of 
RNAi constructs/lines, large public stock. Repositories of 
mutant and transgenic strains (maintained by live culture 
and/or cryopreservation of ovaries or embryos) and rea-
gents for targeted genome editing using ZFN, TALENs or 
CRISPR/Cas9 system [145, 146].

For many reasons, including ease of genetic manipula-
tion, Drosophila has been used as human disease mod-
els, revealing several conserved pathogenic mechanisms 
and potential therapeutic approaches [163–165], and a 
growing body of new neuromuscular disease models are 
being established through these animals [145, 166, 167]. 
They exhibit simple, well-defined behaviours, which is an 
asset, particularly for neuromuscular disease research, 
allowing easy screening of their ability to crawl/climb 
and fly [166] alongside other functional assessments, 
including force-frequency relationship [168]. A variety of 
Drosophila muscular dystrophy models have been gener-
ated to model disease mechanisms and evaluate poten-
tial genetic disease modifiers and therapeutic strategies, 
including for DMD [169–172], oculopharyngeal muscu-
lar dystrophy [173, 174] and laminopathies [175] several 
of which were reviewed in detail by Plantie et al., [172]. 
More recently, fly models of myotonic dystrophies have 
been successfully developed that replicate key features 
of these diseases seen in humans and have contributed 
to our improved understanding of pathogenetic mecha-
nisms and how the expanded repeats (in DMPK and 
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ZNF9 in DM types 1 and 2, respectively) lead to many 
complex effects on various cellular processes via reduced 
gene function, RNA toxicity and altered splicing [166, 
176–180]. Furthermore, therapeutic screens in these MD 
models have identified novel targets and potential thera-
peutic approaches that improve survival and locomo-
tor activity [181, 182]. Drosophila has been extensively 
utilised as a model for sarcopenia and ageing research 
because of its accelerated development and short life 
span [167, 183, 184].

C. elegans
Another popular invertebrate model of muscle develop-
ment is Caenorhabditis elegans. Like Drosophila, they 
offer several advantages, including fecundity, ease of use, 
low cost and absence of regulatory oversight. As worms, 
they are very simple animals and lack many key mamma-
lian organs and physiological systems (including a heart 
and circulatory system and immune system). C. elegans 
has been well studied as a developmental and genetic 
model, and its genome was the first to be sequenced of 
any multicellular organism [185] as it is compact (100.3 
Mbp containing around 20,000 genes); there are homo-
logues for 60–80% of human protein-coding genes and 
around 40% of disease-causing genes [186].

C. elegans muscle structure, general composition and 
cellular physiology have similarities to the skeletal mus-
culature of vertebrates, and they have been used to model 
aspects of muscle development, particularly sarcomere 
assembly and maintenance [187, 188]. The (obliquely) 
striated body wall muscles used for locomotion extend 
longitudinally from head to tail and are composed of 
a single layer of rhomboid muscle cells [189, 190]. The 
function of these muscles can be evaluated by sim-
ple motility (thrashing) assays and other more sensitive 
assays are being developed [187, 191]. Thanks to their 
transparent cuticle, their muscle can be visualised in vivo, 
made easier with fluorescent protein reporter technology 
[189, 192]. There are, however, some notable differences: 
in particular, body wall muscle cells are post-mitotic, do 
not fuse during development and remain mononuclear 
[190, 193]. Ultrastructurally, the z-disc and costamere of 
vertebrate muscle are replaced by a dense body in C. ele-
gans, which provides a similar anchoring function linking 
actin filaments to the extracellular matrix [189]. In addi-
tion, they lack satellite cells (muscle stem cells) required 
for regeneration/repair mechanisms; however, for some 
degenerative conditions, this can simplify interpretation 
and is seen as an asset [167].

The majority of C. elegans are self-fertilizing hermaph-
rodites that are able to produce large numbers of geneti-
cally identical offspring, which is ideal for large-scale 

experiments to evaluate therapeutic strategies and 
genetic interactions. Genetic manipulation is straight-
forward in  vivo, and they are amenable to various well-
described methods for genetic manipulation, many of 
which were developed in this organism [194, 195]. One 
advantage is the variety of methods to introduce genetic 
material, including adding E. coli containing engineered 
plasmids (e.g., expressing dsRNA for interference) to 
their diet [194]. Recently, genome editing techniques 
have become prominent in this organism, as for others 
discussed. Various tools are now established and avail-
able for researchers, including online databases and 
repositories of information (Wormbase) and libraries of 
mutant and transgenic worm cultures [195].

C. elegans is well-described as an invertebrate model of 
Duchenne muscular dystrophy [196]. Like DMD patients, 
dys-1 mutant worms (particularly the dys-1(eg33) mutant 
[197] have muscle degeneration and impaired motor 
function, which are exacerbated by concurrent mutations 
in hlh-1 (a homologue for myoD) [198] and improved by 
treatment with prednisone [199, 200]. More than 1000 
compounds have been screened in this model with over 
20 candidate drugs identified (summarised in Wasala 
et al., [201]; the translatability of these findings is unclear; 
however, glucocorticoids, hormone-related therapies 
(e.g. serotonin and melatonin) and cyclosporin A have 
been trialled in other models and human patients with 
varying success [196]. Recent work has revealed altered 
mitochondrial function as a novel target and potential 
therapeutic strategies to protect against this deteriora-
tion, including febuxostat [202], MA-5 [203] and modu-
lation of sulfur metabolism by supplementation with 
hydrogen sulphide [199] or sulphur-containing amino 
acids [204]. C. elegans have orthologues for many genes 
important to muscle function in addition to the dystro-
phin-associated glycoprotein complex [196, 205, 206] and 
have been used to model aspects of several myopathies 
and neuromuscular disorders, including sarcopenia [145, 
167, 207–209].

Embryonic zebrafish
The embryonic zebrafish (Danio rerio) is another long-
standing developmental model that has undergone a 
more recent resurgence in biomedical research [210]. As 
vertebrates, they have intermediate complexity between 
mammalian and invertebrate models, allowing research-
ers to harness advantageous features of both, including 
rapid, external development of large numbers of trans-
parent embryos, ease of breeding, genetic manipulation 
and imaging, as well as the ability to model vertebrate-
specific features and complex organ systems [211–213]. 
From a 3Rs perspective (in the UK and other European 
countries), zebrafish larvae are protected from five days 
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post fertilisation (dpf) (when they have developed to 
allow independent feeding) [62, 214], and, whilst they are 
inexpensive to maintain in comparison with mammalian 
models, breeding adults are housed in licensed aquarium 
facilities. There is an estimated 70% homology between 
the human and zebrafish genomes, and more than 80% of 
human disease-causing genes have orthologous counter-
parts in zebrafish [215].

Skeletal muscle is the largest and most prominent 
organ in developing zebrafish, sharing numerous devel-
opmental, molecular, histological, ultrastructural and 
pathological features with mammalian muscle [216, 217], 
including excitation–contraction coupling machinery, 
contractile apparatus and components of the dystrophin-
glycoprotein complex [218–221]. Zebrafish embryos 
undergo rapid myogenesis: multinucleate myotubes 
develop within somites in the first 24 h corresponding 
with the onset of movement (spontaneous tail coiling), 
and mature myofibres are present within myotomes of 
free-swimming embryos by 3 dpf (Fig. 2). This pre-pro-
tected stage is commonly used for muscle development 
and myopathy research due to the presence of striated 
myofibres with highly organised tubuloreticular mem-
brane systems. Disorganisation of the normal muscle 
structure can be easily screened using birefringence and 
functional assays, including the touch-evoked swimming 
response and spontaneous swimming behaviour, which 
can be automated in 96-well plates and provide quanti-
tative data for large-scale studies [222]. More detailed 
studies using electrophysiological recordings and biome-
chanical measurements have also been used to character-
ise muscle abnormalities [223]. As with any model, there 
are disadvantages and differences in comparison with 
the target tissue, human muscle: skeletal muscles have 
similar cellular and subcellular structures and machinery, 
yet their gross anatomy and forces on the musculoskel-
etal system are very different. Whilst fish have appen-
dicular and axial muscle groups, the former is much 
smaller than in mammals and locomotion is tail-driven 
with alternating contraction of myotomal muscle where 
fast- and slow-twitch fibres are topographically separate 
[224–226].

Another asset of the embryonic zebrafish model is the 
ease of genetic manipulation and an expanding array 
of strategies for generating transient or stable effects. 
Morpholinos are short, stable, RNA-binding oligonu-
cleotides that can be injected into early embryos to pro-
duce a short-term reduction in the expression of a gene 
of interest by interfering with translation or splicing of 
mRNA or blocking miRNA activity for 3–5 days dur-
ing embryonic development, allowing for rapid screen-
ing of effects [227]. Similarly, injection of DNA or RNA 
leads to transient over-expression for localisation of 

tagged variants and rescue experiments. Stable mutants 
and transgenic lines have been generated by chemi-
cal mutagenesis (e.g. ENU) [228], transposon-mediated 
BAC transgenesis [229] or targeted genome editing 
using CRISPR/Cas9 [230], ZFN [231] or TALENs [232]. 
The zebrafish genome is sequenced and well annotated 
[233], and thanks to the zebrafish mutation project [234], 
there are now many mutants and transgenic lines readily 
available to researchers, including those expressing fluo-
rescent reporters [234]. A potential source of complex-
ity when using zebrafish as a genetic disease model is an 
additional genome duplication that occurred in ancestral 
teleost fish around 500 million years ago [235]. Although 
many duplicates have been lost in the intervening mil-
lennia, some genes may have more than one ortholog for 
researchers to account for [236].

A variety of myopathies, including muscular dys-
trophies [218, 219, 237–239] and congenital myopa-
thies [220, 221, 240], have been modelled in embryonic 
zebrafish with phenotypes and disease mechanisms 
that are translatable to mammals and humans. The first 
dystrophin mutant was identified during a forward 
genetic screen for myopathic phenotypes following ENU 
mutagenesis, and this strategy revealed several myopathy 
models identified based on locomotion and/or structural 
abnormalities [241, 242]. Since then, according to some 
estimates, 75 out of 121 known myopathy-associated 
genes have been modelled in zebrafish using a variety of 
strategies, including morpholinos and genome editing 
[243]. Disease pathways appear to be highly conserved, 
and in addition, several zebrafish models for muscular 
dystrophies, including DMD and Ullrich congenital mus-
cular dystrophy, more closely recapitulate the severity of 
the pathology seen in humans than the analogous mouse 
model [244, 245]. In addition to disease modelling, 
zebrafish have been used to identify new disease mecha-
nisms. For example, Dowling demonstrated increased 
basal oxidative stress in addition to defective excitation–
contraction coupling in the pathogenesis of RYR1-related 
myopathies using relatively relaxed mutant zebrafish; 
this was supported by findings in cultured myotubes 
from patients and ameliorated by antioxidant treatment 
[246]. Furthermore, zebrafish provide us with the unique 
opportunity to efficiently validate and characterise novel 
variants discovered by next-generation sequencing in 
small families with rare myopathies [222]. Very recently, 
a zebrafish model of SPEG-related CNM has been devel-
oped using CRISPR-Cas9 genome editing following 
on from the discovery that bi-allelic variants in SPEG 
cause congenital myopathy [247]. Similarly, mutations 
in CCDC78 were identified as the cause of a novel CNM 
with prominent internal nuclei and atypical cores in a 
small family and studied in embryonic zebrafish [248].
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Fig. 2  Muscle development in embryonic zebrafish at 24 (A-C) and 72 (D-H) hours post fertilization (hpf ). Representative live AB WT embryos are 
shown in A and D (top), birefringence (D, middle) and differential interference contrast imaging (D, bottom) can also be used live to view muscle 
features including organisation and striations. Immunohistochemistry for sarcomeric myosin (MF20) B,C demonstrates myotubes in the somites 
(imaged using widefield fluorescence B and confocal C microscopy). F H&E stained gelatin-embedded cryosection and G toluidine blue stained 
semi-thin section of 72 hpf embryos. At this stage the myotomes contain mature myofibres with organized, striated multi-nucleate myofibres 
revealed by RYR1 immunohistochemistry E and electronmicroscopy H 
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Embryonic zebrafish models are also excellent models 
for high throughput screening for genetic disease modi-
fiers and compounds for potential therapeutic strategies 
[201, 249–251]. As previously discussed, invertebrate 
models and yeast are commonly used for large-scale 
molecular screens, but for studies of complex organ 
systems (like the neuromuscular system), embryonic 
zebrafish have a distinct advantage as they are able to 
more faithfully reproduce phenotypic characteristics 
leading to translatable results [252]. Conversely, for com-
monly used mammalian models such as the mouse, their 
reproductive capacities and their overall size and practi-
cality limit their usefulness for large-scale screens; fur-
thermore, due to their optical transparency, live imaging 
of muscle can be conducted non-invasively in zebrafish 
embryos, whereas muscle evaluation in a mouse model 
would require invasive biopsy procedures or culling of 
animals [172, 253]. Several large-scale unbiased screens 
have been carried out in zebrafish models of DMD and 
other muscular dystrophies to determine if any licensed 
drugs could be used, alongside other strategies, to modify 
disease—several potential therapeutic candidates, includ-
ing phosphodiesterase and cyclophilin inhibitors and 
fluoxetine, were identified [252, 254, 255]. Drug screens 
in zebrafish models have also been employed for congen-
ital myopathies, including MTM [256], notably identify-
ing modulation of autophagy with PIK3C2B knockdown 
[257] and neuromuscular junction stimulation [258], 
of which the latter strategy has shown some efficacy in 
human clinical patients. Zebrafish have a longer life span 
than invertebrates; therefore, whilst they have been used 
for sarcopenia research, this is much less common [167].

Conclusions
The ability to move towards things that sustain us and 
away from danger is of evolutionary importance and 
common to all animals – it is, therefore, unsurpris-
ing that many aspects of muscle development, anatomy 
and pathology are conserved and share similar features 
between species. Animals, in particular rodents, have 
been used for many years to model human muscle and 
myopathies, enabling a vast expansion in our under-
standing of muscle biology and disease mechanisms – yet 
many questions remain unanswered, very few strategies 
that have shown promising results in an experimental 
setting have translated into the clinic and the majority of 
inherited myopathies remain untreatable [43].

This is an exciting time for muscle disease researchers 
as scientific and technological advances are allowing us 
to utilise and develop real alternatives to replace mam-
malian models. In addition to the 3Rs considerations, 
many of these models have other advantages over tradi-
tional mammalian models, including reduced costs and 

space requirements, speed of development, access to 
immature stages, ease of imaging and genetic manipula-
tion and reduced environmental impact. Cellular models 
are indispensable tools for investigating muscle disor-
ders, and several recent developments (including the use 
of stem cell-derived cultures from human patients and 
progress in tissue engineering techniques) have allowed 
us to generate more physiologically relevant in  vitro 
models for muscle research. In the future, improvements 
that include skeletal muscle in human “body on a chip” 
technologies and computational models have the biggest 
potential for full replacement of animals for muscle dis-
ease research [259].

Partial replacement with less sentient organisms 
offers another alternative when a whole animal model is 
required due to the complexities and interactions of skel-
etal muscle in vivo. For example, mature myofiber struc-
ture is often required to study congenital myopathies as 
a major pathogenetic mechanism is the disorganisation 
of tubuloreticular membrane systems and defective exci-
tation–contraction coupling [31], which are challenging 
to replicate in cellular models. Of the models described 
here, embryonic zebrafish, as vertebrates, are phyloge-
netically closest to mammals, and they have successfully 
been used to model numerous inherited myopathies. 
Recent progress in MTM research provides an excel-
lent example of how embryonic zebrafish can be used as 
pre-clinical models and for high throughput screening to 
elucidate novel mechanisms and potential therapeutic 
targets, thereby reducing and partially replacing mam-
mals [220].

Scientific discoveries utilising the models described 
here have undoubtedly afforded valuable insights into 
biological processes, disease mechanisms and poten-
tial therapeutic strategies. The impact of these findings, 
however, depends on their ability to translate into clini-
cally relevant results in human patients. Anatomical, 
physiological, and molecular differences between model 
and target organisms and the inherent variation in sub-
jects and their environment in the real world compared 
with a controlled experimental setting, are amongst the 
various factors proposed that might contribute to the 
well described “translational gap” [260, 261]. A rational, 
integrative, collaborative approach combining explora-
tory and hypothesis-driven research strategies and veri-
fying findings across different models, whilst leveraging 
the advantages of each system, is likely to increase con-
fidence for efficacy prior to human trials. A stepwise 
approach, utilizing in  vitro and small organism models 
for high-throughput screening and mechanistic stud-
ies, complemented by refined in  vivo pre-clinical trials 
using smaller numbers in rodent or higher mammalian 
models aided by and informing computational models, 
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aligns with 3Rs principles and contributes to the ongo-
ing pursuit of effective therapies and deeper insights into 
muscle-related disorders.

In summary, as stated by George E.P. Box, “All models 
are wrong, but some are useful”. The pursuit of ideal mod-
els — simple, inexpensive, readily available, and accurate 
— remains a constant endeavour in biological or mus-
cle research. Researchers investigating muscle biology 
and myopathies can harness a diverse array of models; 
a thorough understanding of the advantages and limita-
tions of each will enable them to tailor their approach 
to best answer specific research questions while adher-
ing to the principles of the 3Rs. Although animal mod-
els remain indispensable for certain aspects of myopathy 
research, the judicious use of alternatives, combined with 
refined experiments on small animal cohorts, ensures 
the humane generation of high-quality, translational data 
with relevance to both human and veterinary patients.
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