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Abstract
Streptococcus suis serotypes 2 and 14 are the most common zoonotic strains, but previous identification methods 
made distinguish these two serotypes from other S. suis serotypes difficult. To effectively prevent and control them, 
there is an urgent need for a highly sensitive and specific method to identify these two serotypes. In this study, a 
fluorescent probe was designed for the single nucleotide polymorphism site at cpsK 483 of Streptococcus suis type 
2 and type 14 compared with other serotypes, and an enzyme-activated probe quantitative PCR (EA-probe qPCR) 
method was established for the detection of Streptococcus suis type 2 and type 14 by combining with the specific 
hydrolysis characteristics of the RNase H2 enzyme. The results showed that the optimal probe concentration for 
this method was 0.5 µM and the optimal RNase H2 enzyme concentration was 25 mU.This method showed no 
reactivity with genomic DNA from Streptococcus suis strains 1/2, 5, 7, 9, 23, 28, 29, and 31, confirming its high 
specificity. And its sensitivity can reach 18.4 CFU. In addition, 19 clinical strains of Streptococcus suis type 2 or type 
1/2 were tested. The results showed 100% agreement with the gene sequencing method. In conclusion, this 
method can meet the needs of accurate laboratory testing of Streptococcus suis serotypes 2 and 14 and has value 
for clinical prevention.
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Introduction
Streptococcus suis (SS) is a Gram-positive bacterium 
responsible for the streptococcal disease with a high 
mortality rate in pigs. Most of the SS isolates obtained 
from sick pigs belonged to serotype 1, 1/2, 9 and 14, out 
of the 29 porcine streptococcal serotypes [1]. Addition-
ally, SS is a significant zoonotic pathogen resulting in 
clinical symptoms such as meningitis, septicemia, endo-
carditis, and endophthalmitis in humans [2]. Human 
cases of SS infection were first identified in Denmark in 
1968 [3] and have since been reported in various Asian 
countries, including China,  Thailand and Vietnam, as 
well as in Western countries such as the Netherlands [4]. 
In Asia, human SS infections are typically associated with 
exposure to diseased pigs or contaminated pork products 
[5]. In contrast, in Western countries, human infections 
are generally sporadic [6]. Among the 29 SS serotypes, 11 
serotypes have been reported to be linked with human 
infection cases, including serotypes 1, 2, 4, 5, 7, 9, 14, 16, 
21, 24, and 31 [7, 8]. SS serotype 2 is the most prevalent 
in human infections, accounting for 93.4% of cases, fol-
lowed by type 14 at 5.2% [9], underscoring the critical 
need for epidemiological surveillance of these serotypes. 
Therefore, a rapid, accurate, and sensitive typing assay for 
SS serotype 2 and 14 is crucial for evaluating their poten-
tial public health risks.

Traditional serological identification methods are lim-
ited in the detection of SS. The slide agglutination test 
is time-consuming and results are less reliable due to its 
subjective nature. In addition, the standard diagnostic 
sera required for this method are difficult to be prepared 
and expensive. In recent years, PCR has been widely used 
for the detection of SS due to its high sensitivity, speci-
ficity, and reproducibility [10–13]. However, due to the 
high degree of homology between the cpsK genes of SS 
serotype 1/2 and 2 or 1 and 14, conventional PCR-based 
assays were unable to distinguish between these sero-
types. PCR methods based on single nucleotide poly-
morphisms (SNP) sites have been established for the 
differential detection of SS serotype 1/2 from 2 and sero-
type 1 from 14, but the method requires sophisticated 
dedicated instrumentation, i.e. polymerase chain reac-
tion-restriction fragment length polymorphisms, high-
resolution melting curves and mismatch amplification 
mutation detection [14–16].

In this study, we developed an enzyme-activated fluo-
rescence quantitative polymerase chain reaction (qPCR) 

method for detecting the SNP at position 483 of the cpsK 
gene in SS serotypes 2 and 14. Utilizing the precise rec-
ognition abilities of the RNase H2 enzyme on the nucleo-
tide SNPs, it enables rapid, accurate, and sensitive typing 
of SS serotypes 2 and 14. This convenient method meets 
the requirements for high-throughput laboratory detec-
tion and can be used for both differential detection and 
epidemiological investigations.

Materials and methods
Bacterial culture
SS standard strains (serotype 1/2, serotype 2, serotype 5, 
serotype 7, serotype 9, serotype 14, serotype 23, serotype 
28, serotype 29, and serotype 31) and 19 clinical strains 
of serotype 1/2 or 2 identified by Multiplex PCR are kept 
at the laboratory in Guangdong Animal Health Institute 
[17].

Genomic DNA extraction
All SS strains were grown about 12 h in tryptic soy broth 
(TSB) medium (Difco) at 37℃. The details of genomic 
DNA extraction are as follows: The bacteria pellet was 
collected after centrifugation at 13,523 rcf for 2  min. 
Then, it was resuspended in PBS and centrifuged again 
at 13,523 rcf for 4 min. This process was repeated three 
times. The washed bacterial pellet was resuspended in 
100 µL of double-distilled water (dd-H₂O). The suspen-
sion was boiled at 100℃ for 5  min, then centrifuged at 
13,523 rcf for 2 min. The supernatant was stored at -20℃ 
and used as template DNA for amplification.

Primer design
Specific primers and probes were designed according 
to the SS cpsK gene sequence (GenBank: AF118389) 
by using the Primer5 software. Probes were targeted to 
the 483rd position of the cpsK gene. All oligonucleotide 
primers and probes (Table 1) were synthesized by Sangon 
Biotech Co. Ltd. (Shanghai, China).

Basic EA-probe qPCR reaction system
The reaction mixture for EA-probe qPCR consisted of 
10 µL Taq HS Mix (Takara), 0.2 µM primers P1 and P2, 
25 mU RNase H2 enzyme (Integrated DNA Technolo-
gies) and 0.4 µM probe. Then, 1 µL of the DNA sample 
was added, and the final volume was adjusted to 25 µL 
with dd-H2O. A Light Cycler 480 (Roche) was employed 
to perform EA-probe qPCR, following a program with an 

Table 1  Sequences of primers and probes for EA-PCR
Primers and probes Sequences (5’-3’) Length (bp)
P1 ​A​G​C​G​G​C​A​G​G​A​A​T​G​T​T​T​G​T​A​A 20
P2 ​C​A​T​A​G​A​G​C​A​A​G​C​G​A​T​A​A​G​T​G​A​A​G​T​A 25
Probe ​T​G​G​T​G​G​C​CT(FAM)GG(RNA)AAT(BHQ1)​A​A​A​C​T​C​T-C3 Spacer 21
Note The bold base indicated it was modified as the manner in the bracket.
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initial denaturation step at 95℃ for 2  min, 40 cycles of 
denaturation step of at 95℃ for 20  s, an annealing step 
of at 55℃ for 20 s, and an extension step at 72℃ for 40 s.

Optimization of the EA-probe qPCR reaction system
The optimal probe dose was determined by performing 
an EA-probe qPCR test with different concentrations 
including 0 µM, 0.1 µM, 0.2 µM, 0.3 µM, 0.4 µM, 0.5 µM, 
0.6 µM, and 0.7 µM. Similarly, the RNase H2 enzyme was 
set at various doses with 0 mU, 5 mU, 10 mU, 20 mU, 25 
mU, 30 mU, and 35 mU. The optimization was performed 
with SS serotype 2 DNA.

Sensitivity test
Colony-forming units (CFU) of SS serotype 2 culture 
were determined by using colony-counting agar plates. In 
detail, the culture was 10-fold diluted by using sterile dis-
tilled PBS. Then, the 10-fold serial-dilution were respec-
tively spread on tryptic soy broth (TSB) medium at 37℃. 
After 24 h of incubation, colonies were counted. Mean-
while, genomic DNA of each 10-fold serial-dilution was 
extracted by boiling at 100°C for 5 min. Then, 1µL dilu-
tion was directly used as the template for the EA-probe 
qPCR.

All SS strains were grown about 12  h in tryptic soy 
broth (TSB) medium (Difco) at 37℃. The details of 
genomic DNA extraction are as follows: The bacteria 
pellet was collected after centrifugation at 13,523 rcf for 
2 min. Then, it was resuspended in PBS and centrifuged 
again at 13,523 rcf for 4 min. This process was repeated 
three times. The washed bacterial pellet was resuspended 
in 100 µL of double-distilled water (dd-H₂O). The sus-
pension was boiled at 100℃ for 5 min, then centrifuged 
at 13,523 rcf for 2  min. The supernatant was stored at 
-20℃ and used as template DNA for amplification.

Specificity test
To assess the specificity of the EA-probe qPCR method, 
genomic DNA was extracted from SS standard strains 
(serotypes 1/2, 5, 7, 9, 23, 28, 29, and 31) as previously 
described, and then the qPCR was performed using the 
optimized reaction mixture.

Application of the EA-probe qPCR method in clinical 
detection
In our laboratory, 19 clinical SS strains were identified as 
serotype 1/2 or 2 using Multiplex PCR [11]. To evaluate 
the clinical detection capability of the EA-probe qPCR 
method, these clinical SS strains were tested. Concur-
rently, the sequencing results of the 483rd position of 
the cpsK gene, amplified using the P1/P2 primer pair, 
were compared with results obtained using the EA-probe 
qPCR method.

Results
Establishment and optimization results of basic reaction 
system
The fundamental reaction system of EA-probe qPCR was 
employed to evaluate the generation of fluorescent sig-
nals utilizing SS serotype 2 and serotype 14 DNA as tem-
plates. In contrast, the negative control did not produce 
any fluorescent signal (Fig. 1A). The optimal probe dose 
was determined by varying the probe concentration from 
0 µM to 0.7 µM. When the probe concentration was 0.5 
µM, amplification efficiency was good, with no significant 
difference compared to higher concentrations (Fig. 1B). A 
probe concentration of 0.5 µM was therefore selected as 
the optimal. An optimization test was also conducted on 
the RNase H2 enzyme. The results showed that an RNase 
H2 enzyme concentration of 25 mU had the best reac-
tion and amplification efficiency (Fig. 1C). Therefore, 25 
mU RNase H2 enzyme was selected as the optimal dose. 
Finally, the optimized reaction mixture for EA-probe 
qPCR consisted of 10 µL Taq HS Mix, 0.2 µM primers P1 
and P2, 25 mU RNase H2 enzyme, and 0.5 µM probe.

Sensitivity test results
After plate counting of SS serotype 2 at a concentration 
of 1.84 × 105 CFU, 1 µL of each sequential 10-fold gra-
dient dilution was used as a template for the EA-probe 
qPCR assay, following the optimal reaction conditions 
to identify the minimum detection limit of the EA-
probe qPCR method. The results showed that the EA-
probe qPCR had a sensitivity as low as 18.4 CFU (Fig. 2). 
Although low amplification signals emerged when gradi-
ent dilution templates were lower than 18.4 CFU (Ct > 
35), they could not be distinguished from the negative 
group. The Cycle Threshold (Ct) refers to the number of 
PCR cycles required for the fluorescence signal to exceed 
the set threshold during qPCR. Hence, we set the cut-off 
value of this method at Ct < 35.

Specificity test results
The results are shown in Fig.  3, where genomic DNA 
from SS serotypes 2 and 14 produced a fluorescent signal, 
while genomic DNA from eight standard SS strains did 
not. Thus, the EA-probe qPCR method is highly specific.

Evaluation of EA-probe qPCR by testing clinical SS strains
Sequencing of 19 clinical SS strains revealed that three 
strains contained T nucleotides at position 483 of the 
cpsK gene, while sixteen strains had G nucleotides. This 
indicates that three of these strains belong to SS serotype 
1/2, while sixteen of them belongs to SS serotype 2. The 
DNA extraction from these strains followed previously 
described methods [18]. The EA-probe qPCR results 
showed a fluorescent signal for 16 strains and no fluores-
cent signal for three strains. The results of the EA-probe 
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Fig. 2  Sensitivity test results: The EA-probe qPCR method was used to detect genomic DNA from SS serotype 2 at the following diluted concentrations: 
(a) 1.84 × 104 CFU, (b) 1.84 × 103 CFU, (c) 1.84 × 102 CFU, (d) 1.84 × 101 CFU, (e) 1.84 × 100 CFU, (f ) 1.84 × 10− 1 CFU, (g) 1.84 × 10− 2 CFU, (h) 1.84 × 10− 3 CFU, 
(i), (j) and (k) Negative control

 

Fig. 1  Establishment of the reaction system and the results of the optimization: (A) Results of establishing the basic reaction system. (a) SS serotype 2 ge-
nomic DNA, (b) SS serotype 14 genomic DNA, (c) and (d) Negative control. (B) Optimization results of probe concentration for the EA-probe qPCR Method. 
Probe concentration: (a) 0 µM, (b) 0.1 µM, (c) 0.2 µM, (d) 0.3 µM, (e) 0.4 µM, (f ) 0.5 µM, (g) 0.6 µM, (h) 0.7 µM. (C) Optimization results of RNase H2 enzyme 
concentration for EA-probe qPCR Method. RNase H2 enzyme dosage: (a) 0 mU, (b) 5 mU, (c) 10 mU, (d) 15 mU, (e) 20 mU, (f ) 25 mU, (g) 30 mU, (h) 35 mU
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qPCR method and the sequencing method were in agree-
ment (Table 2).

Discussion
SS has posed a serious economic impact on the pig indus-
try. Both SS serotypes 2 and 14 are significant human and 
veterinary pathogens that endanger the general public’s 
health. Serotyping methods for SS are essential for con-
trolling and prevention of zoonotic disease outbreaks. 
Therefore, rapid, specific, and sensitive detection meth-
ods for SS serotypes 2 and 14 are urgently needed. We 

designed an RNase H2 enzyme-activated probe fluores-
cence quantitative PCR method based on the specific 
SNP site in the cpsK gene of SS serotype 2 and 14, pro-
posing a novel detection method for these serotypes. 
Previous studies have shown that the SNP at cpsK posi-
tion 483 in SS serotypes 2 and 14 is an ideal molecular 
target that can be used to differentiate between types 1/2 
from 2 and between types 1 from 14   [19]. In this study, 
we developed an enzyme-activated probe-fluorescence 
quantitative PCR (EA-probe qPCR) method based on 
the SNP at position 483 in the SS serotypes 2 and 14 cpsK 

Table 2  Evaluation of EA-probe qPCR by testing clinical SS strains
Number Streptococcus suis strains Multiplex PCR Locus 483 of the cpsK gene by sequencing Serotypes EA-probe qPCR
1 GZ-156 Serotypes 2 or 1/2 G 2 +
2 GZ-894 Serotypes 2 or 1/2 T 1/2 -
3 GZ-1016 Serotypes 2 or 1/2 G 2 +
4 GZ-746 Serotypes 2 or 1/2 G 2 +
5 GZ-759 Serotypes 2 or 1/2 G 2 +
6 GZ-766 Serotypes 2 or 1/2 G 2 +
7 GZ-783 Serotypes 2 or 1/2 G 2 +
8 GZ-1018 Serotypes 2 or 1/2 T 1/2 -
9 GZ-804 Serotypes 2 or 1/2 G 2 +
10 GZ-820 Serotypes 2 or 1/2 G 2 +
11 GZ-834 Serotypes 2 or 1/2 G 2 +
12 GZ-840 Serotypes 2 or 1/2 G 2 +
13 GZ-905 Serotypes 2 or 1/2 G 2 +
14 GZ-953 Serotypes 2 or 1/2 G 2 +
15 GZ-964 Serotypes 2 or 1/2 G 2 +
16 GZ-975 Serotypes 2 or 1/2 T 1/2 -
17 GZ-1084 Serotypes 2 or 1/2 G 2 +
18 GZ-1079 Serotypes 2 or 1/2 G 2 +
19 GZ-1089 Serotypes 2 or 1/2 G 2 +
Note (+) Positive, (−) Negative

Fig. 3  Specificity test results: The EA-probe qPCR method was conducted with genomic DNA from (a)  SS serotype 2, (b) serotype 14, (c) serotype 1/2, (d) 
serotype 5, (e) serotype 7, (f ) serotype 9, (g) serotype 23, (h) serotype 28, (i) serotype 29, (j) serotype 31, (k), (l), and (m) Negative control
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gene. This method utilizes a ribonucleotide insertion 
and a probe modified with FAM fluorescent and BHQ1 
quenching motifs, combined with the specific hydro-
lytic properties of RNase H2. Based on the principle of 
RNase H2, G deoxyribonucleotides at the 483 site in the 
probe is replaced with a ribonucleotide. When the ribo-
nucleotide in the probe pairs complementarily with the 
deoxyribonucleotide at the corresponding site in the tar-
get gene, RNase H2 hydrolyses the paired site, causing 
the FAM fluorescent motif to separate from the BHQ1 
quenching moiety and the generating a fluorescent sig-
nal. Conversely, the special Taq DNA Polymerase used in 
this study lacks exonuclease activity, so it cannot cleave 
and the FAM fluorescent motifs in the enzyme-activated 
probes like the work principle of Taq-Man probes. If the 
probe is mismatched with the amplification template, 
the ribonucleotide cannot pair complementarily with the 
corresponding deoxyribonucleotide, preventing RNase 
H2 from hydrolyzing it and resulting in no fluorescent 
signal (Fig. 4).

This method significantly enhances the detection of 
SNPs through the specificity of the probes. PCR-restric-
tion fragment length polymorphism method was a choice 
for the differentiation of SS serotypes 1/2 versus 2 and 1 
versus 14, but this method requires gel electrophoresis. In 
contrast, our EA-probe qPCR method does not require 
opening the cap to read the results. It is not only easy to 
be perform but also avoids aerosol contamination. Addi-
tionally, EA-probe qPCR results are interpreted similarly 
to those of TaqMan probe based qPCR, avoiding the sub-
jective instability associated with high-resolution melting 
curves analysis. In recent years, whole-genome sequenc-
ing (WGS) has emerged as an alternative for differentia-
tion SS serotypes [20]. However, it requires specialized 
laboratory equipped with sequencers. To address this 
limitation, we developed a probe based LAMP method, 
which is well-suited for field and on-site detection, to 
rapid detect SS serotype 2 and 14 [18]. Compared to 
the probe-based LAMP method, our current EA-probe 

qPCR method is more suitable for routine diagnostic lab-
oratories and high throughput detection. Moreover, this 
method has a low limit of detection of 18.4 CFU, making 
it sufficiently sensitive for routine detection.

In conclusion, the EA-probe qPCR method developed 
for SS serotypes 2 and 14 is easy to perform and suitable 
for rapid, high-throughput analysis in routine diagnostic 
laboratories. Therefore, this method shows great poten-
tial for differentiating zoonotic SS infections.
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