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Abstract
Background  Wild game meat has over the years gained popularity across the globe as it is considered a food 
source with high protein content, low fat content, and a balanced composition of fatty acids and minerals, which are 
requirements for a healthy diet. Despite this popularity, there is a concern over its safety as many species of wildlife are 
reservoirs of zoonotic diseases including those of bacterial origin, more so antibiotic-resistant bacteria.

Methods  This study aimed to describe the prevalence of antibiotic-resistant bacteria in mammalian wild game, 
following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines.

Results  The overall pooled prevalence of antibiotic resistance was established at 59.8% while the prevalence of 
multidrug resistance (MDR) was 17.2%. Resistance was reported in 32 wild game species and the meta-analysis 
revealed the highest prevalence of antibiotic resistance in Yersinia spp. (95.5%; CI: 76.8 − 100%) followed by 
Enterococcus spp. (71%; CI: 44.1 − 92%), Salmonella spp. (69.9%; CI: 44.3 − 90.0%), Staphylococcus spp. (69.3%; CI: 
40.3 − 92.3%), and Escherichia coli (39.5%; CI: 23.9 − 56.4%). Most notably, resistance to highest priority, critically 
important antimicrobials, was recorded in all genera of bacteria studied. Additionally, a significantly higher 
prevalence of antibiotic resistance was observed in studies conducted in remote settings than those in the vicinity of 
anthropogenic activities, pointing to extensive contamination of wild habitats.

Conclusion  This review shows the presence of antibiotic resistance and the carriage of antimicrobial resistance 
(AMR) genes by bacteria isolated from mammalian wild game species. This is a cause for concern if critical steps to 
prevent transmission to humans from meat and meat products are not applied in the wild game meat production 
chain. The extensive occurrence of antibiotic resistance in the wild calls for expansion and adaptation of future AMR 
surveillance plans to include areas with various anthropogenic pressures including in sylvatic habitats.
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Introduction
Antimicrobials play a crucial role in prophylaxis and 
treatment of many diseases in humans and animals. 
However, the overuse and misuse of antimicrobials have 
led to the emergence of highly resistant organisms, a phe-
nomenon referred to as AMR that describes the poten-
tial of microorganisms including bacteria, viruses, fungi, 
and parasites to thrive and continue to grow in the pres-
ence of drugs designed to stop their growth or kill them. 
Antimicrobial resistance is a natural response of micro-
organisms to selection pressure and may be intrinsic 
or acquired and may be effected through limiting drug 
uptake, drug target modification, drug inactivation, and 
active drug efflux [1].

Antimicrobial resistance significantly impacts the 
world economy, human and animal health [2], and 
according to the World Health Organization (WHO), it is 
one of the biggest threats to global health, food security, 
and development in the 21st century. Globally, infections 
with MDR pathogens already cause more than 700,000 
deaths each year, and it has been predicted that the 
annual death rate may reach 10 million people per year 
by 2050, a much higher rate than attributed to cancer [2, 
3]. It is well documented that the over-reliance on and 
use of antibiotics in humans and animals has contributed 
considerably to the dissemination of antibiotics into envi-
ronments [4].

Wild animals are widely distributed across the globe, 
occupying diverse habitats, some near human settle-
ments and livestock farms [5]. As it is unlikely that they 
are being treated with antibiotics, the presence of AMR 
genes and/or antibiotic resistant bacteria in wild animals 
is a sign of anthropic pollution rather than of selection of 
resistance [6]. However, once AMR is established in the 
wild, wildlife can facilitate its transmission across dif-
ferent ecosystems through fecal contamination of water 
sources, soil, and surfaces. Additionally, human exposure 
to AMR from wildlife may occur directly through con-
sumption of wild game meat contaminated with AMR 
pathogens [5].

To reduce the risk of human exposure and acquisition 
of resistant bacteria from wild game, an explicit under-
standing of the epidemiology of AMR in wild game is 
required to perform risk analysis. This review evalu-
ates several studies that reported antibiotic resistance 
in mammalian wild game to assess to what extent AMR 
occurs in wild game globally, and the potential threat it 
may pose to public health. This is in line with the five key 
strategic action plans of the World Health Assembly to 
combat AMR which include; improving awareness and 
understanding of antimicrobial resistance, strengthening 
knowledge through surveillance and research, combat-
ing infection through control measures, optimizing the 
use of antimicrobials in human and animal health, and 

encouraging sustainable investment in new medicines, 
diagnostic tools, and vaccines [7].

Materials and methods
Scope of the review
The study reviewed the presence of antibiotic-resistant 
bacteria in mammalian wild game species, analyzing 
available data on their prevalence as reported by obser-
vational studies or case reports from different geographi-
cal areas from the period between the inception of the 
search database to April 2023.

Literature search strategy
A systematic literature search for articles was con-
ducted in PubMed, Google scholar and Web of Science 
(‘all databases’ option, which includes MEDLINE, Zoo-
logical Records and CAB Abstracts) using the search 
term, ((“Wild game” OR “wild meat”) AND (“Antibiotic 
Resistance” OR “Drug Resistance”, Microbial OR “Anti-
biotic Resistance”, Microbial OR “Antimicrobial Drug 
Resistance”)). Additional articles not identified from the 
three databases were obtained from the reference lists of 
included studies.

Study selection
All study titles and abstracts were exported from the 
search databases to EndNote™ 20 (Philadelphia, PA, 
United States of America) by one author. Duplicate 
records were identified and removed. Studies published 
in multiple forms were screened by checking for author 
names associated with multiple publications in the data 
extraction form.

Study titles and abstracts were jointly reviewed by the 
authors and discrepancies in opinion among the review-
ers were resolved through discussions to reach an agree-
ment. Studies that fulfilled the following PICOs elements 
were included.
P (population): studies reporting the prevalence of AMR 
in bacterial isolates from mammalian wild game species.
I (intervention/exposure): resistance of bacteria isolated 
from mammalian wild game to an antibiotic and/or an 
antibiotic class.
C (comparator): not applicable.
O (outcomes): [1]: prevalence of phenotypic and/or geno-
typic resistance to antibiotics /antibiotic classes in bac-
terial isolates from mammalian wild game species [2]: 
data on the animal species in which antibiotic resistance 
is reported [3]: species of bacteria for which resistance 
is reported and [4]: methods used to detect AMR in the 
bacteria isolates.
S (study design): cross-sectional studies and case reports.

We excluded studies in domestic animals and non-
mammalian wild game species. Furthermore, articles 
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based on experimental studies, clinical trials, and reviews 
were excluded.

Risk of bias and quality assessment
All authors independently evaluated the quality and 
methodology of all selected studies using the Joanna 
Briggs Institute (JBI) Critical Appraisal Tool for preva-
lence studies [8]. The tool has ‘Yes,’ ‘No,’ ‘Unclear’ or ‘Not 
applicable’ question types and scores were assigned as 1 
for ‘Yes’ and 0 for ‘No’ and “Unclear”. One question (ques-
tion 9) that was irrelevant to this study was excluded and 
the number of ‘Yes’ scores were added, and the percent-
age was computed by dividing by the total number of 
questions (in this case 8). The studies were classified as: 
low quality (less than 50% score), moderate quality (50 to 
75%), and high quality (> 75%) and scores from all review-
ers were compared and discrepancies between the scores 
resolved through discussion.

Data extraction
Two reviewers independently extracted data from the 
selected articles to a standardized data extraction form 
in Microsoft Excel® version 15.0 (Microsoft Corporation, 
Redmond, WA, United States). Data extracted included 
geographical location, animal species studied, sample 
type collected, bacterial species, sample size, detection 
methods applied, antibiotics for which susceptibility tests 
were conducted (phenotypic resistance), AMR genes 
detected (genotypic resistance), number of positive iso-
lates. The prevalence of antibiotic resistance was com-
puted by dividing the number of isolates resistant to at 
least one antibiotic by the total number of isolates tested. 
Additional data was collected on names of authors, study 
title, year of publication, year, and month of studies.

Meta-analysis
The pooled prevalence of AMR for each bacterial spe-
cies and their 95% confidence intervals were calculated 
based on the random effects model using the R statisti-
cal packages ‘meta’ and ‘metafor’. Heterogeneity across 
the studies was tested and quantified using I2 statistic 
(Higgins et al., 2003) and was considered significant if I2 
was greater than 50%. The true between-study variance, 
τ2, and standard deviation, τ were determined using 
the tau statistic to estimate the amount of heterogene-
ity (Borenstein et al., 2017). Finally, the heterogeneity 
between the prevalences and their 95% confidence inter-
vals across studies were visualized using forest plots with 
proportions and corresponding 95% confidence intervals. 
Potential sources of heterogeneity were explored through 
subgroup analysis based on factors that may affect prev-
alence, including animal species, species of bacteria, geo-
graphical region (country and continent) and proximity 
to human settlements or livestock. Studies were included 

in the meta-analysis if they reported prevalence of resis-
tance to at least one antibiotic, prevalence in each spe-
cies of animals studied, prevalence in each species of 
bacteria studied and antibiotics for which resistance was 
reported. Additionally, meta-analysis was conducted if at 
least 5 studies met the selection criteria for each species 
of bacteria.

Results
Study characteristics
The literature search retrieved 1772 articles from three 
databases including PubMed, Google scholar and Web of 
Science (‘all databases’ option, which includes MEDLINE, 
Zoological Records and CAB Abstracts). After removal 
of duplicates and title/abstract screening, 1631 were 
sought for retrieval. Out of the 1631 articles, full texts 
were obtained for 1629, while 2 were not found. Further 
screening of full text articles based on the exclusion/
inclusion criteria resulted in exclusion of 1549 articles 
for reasons including studies conducted in other animal 
species not of interest to the present review (n = 768), 
inappropriate study design (n = 169), studies providing no 
relevant data/information to support the review (n = 608) 
and articles not written in English (n = 4). Finally, 80 stud-
ies met the inclusion criteria and were included in the 
systematic review as shown in Fig.  1. Based on the JBI 
critical appraisal tool for systematic review of prevalence 
studies, 38.75% (n = 31) of the selected studies were high 
quality, 61.25% (n = 49) were moderate and none was of 
low quality.

Based on the selected studies, it was observed that 
most studies on AMR in mammalian wild game were 
conducted between 2011 and 2020, with an increasing 
trend observed over the years as shown in Fig. 2.

The selected studies (Table  1) included those from 
Europe (n = 55; 68.75%), Africa (n = 14; 17.5%), Asia (n = 4; 
5%), North America (n = 4; 5%), South America (n = 2; 
2.5%) and Oceania (n = 1; 1.25%). The highest number 
of studies were conducted in Spain [18], Italy [15], Por-
tugal [8], Germany [5] and South Africa [4]. The stud-
ies were conducted in 32 mammalian wild game species 
with wild boars (47 studies), red deer (15 studies) and 
roe deer (10 studies) being the most studied. There were 
less than ten studies for each of the other species. Most 
studies (55%; n = 44) applied the disk diffusion method 
alone for antibiotic susceptibility test, while 15% (n = 12) 
applied only broth microdilution. Additionally, one study 
(1.25%) applied disk diffusion and broth microdilution, 
while 22.5% (n = 18) of the studies combined either disk 
diffusion or broth microdilution with molecular methods 
whereas 6.25%; (n = 5) of the studies applied only molecu-
lar methods.
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Overall prevalence of antibiotic resistance
Seventy-three out of the 80 selected studies were 
included in the meta-analysis. Based on the random 
effects model, the overall pooled global prevalence of 

antibiotic resistance in microorganisms isolated from 
mammalian wild game was 59.8% (CI: 48.4 − 70.7%) 
as shown in the forest plot in supplementary file 1. The 
prevalence of MDR was 17.2% (CI: 10 − 25.7%). Subgroup 

Fig. 1  PRISMA flow diagram for studies selection for the systematic review and meta-analysis of antibiotic resistance in mammalian wild game for study 
periods up to April 2023
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analysis by continent showed antibiotic resistance preva-
lence of 100% in Oceania, 88% in Africa, 58% in Europe, 
36% in North America, 33% in South America and 30% 
in Asia.

Study settings significantly influenced the prevalence of 
AMR (QM = 3.9287, P = 0.0475), with higher prevalence 
(66%) recorded in samples from animals living in remote 
locations than in those collected in settings of close to 
human / livestock establishments (41%). Significant dif-
ferences (P = 0.0475) were observed in prevalence of 
AMR among different genera of bacteria : Campylobacter 
spp. (98%; CI: 47 -100%) followed by Yersinia spp. (96%; 
CI: 62 − 100%), Listeria spp. (90%; CI: 73 -100%), Entero-
coccus spp. (71%; CI: 42 − 93%), Staphylococcus spp. (69%; 
CI: 40 − 92%), Salmonella spp. (67%; CI: 42 − 89%), and 
Escherichia coli (40%; CI: 25 − 55%). Differences in preva-
lence of antibiotic-resistant isolates were not significant 
(P > 0.05) based on study period, study location (country 
and continent) and animal species studied. The predictor 
analyses are shown in Table 2.

Antibiotic resistance in staphylococcus spp
Resistance to antibiotics in Staphylococcus spp. isolates 
was reported by eleven studies, ten from Europe and one 
from Africa. All but one, were included in the meta-anal-
ysis for phenotypic resistance, while 6 were included for 
genotypic resistance (Supplementary file 2).

The overall pooled prevalence of phenotypic antibi-
otic resistance in Staphylococcus spp. was 69.3% (CI: 
40.3 − 92.3%) and prevalence of MDR was 7.6% (CI: 0.0 
− 32.6%). Animal species from which resistant Staphylo-
coccus spp. were isolated included Iberian ibex (100%; CI: 
16 − 100%), European wild rabbits (99%; CI: 57 − 100%), 
red deer (68%: CI: 11 -100%), wild boars (52%; CI: 21 

− 82%), fallow deer (22%; CI:14 − 32%) and roe deer (11%; 
CI: 6 -19%).

Antibiotic resistance was reported in 15 Staphylo-
coccus species including S. aureus, S. saprophyticus, 
S.epidermidis, S. succinus, S.sciuri, S. chromogenes, S. 
xylosus, S. simulans, S.hyicus, S.vitulinus, S.fleurette, 
S. warneri, S. lentus, S. cohnii. subsp. urealyticus and 
S.pseudintermedius. However, one study did not specify 
the Staphylococcus species.

Antibiotic resistance in Staphylococcus spp. was 
reported for 16 classes of antibiotics including; penicillins 
(67%; CI: 46 − 85%), cephalosporins (48%; CI: 20 − 76%), 
macrolides (40%; CI: 11 − 73%), streptogramins ( 32%; CI: 
0.0 − 92%), fluoroquinolones (24%;CI: 1 − 59%), tetracy-
clines (23%; CI: 2 − 54%), aminocoumarins (23%; CI: 16 
− 32%), lincosamides (22%; CI: 0.0 − 56%), steroid esters 
(16%; CI: 0.0 − 58%), macrolactams (14%; CI: 0.0 − 75%), 
carbapenems (13%; CI: 2- 40%), polymyxins (12%; CI: 9 
− 16%), aminoglycosides (10%; CI: 0.0 − 42%), glycopep-
tides (7%; CI: 0.0 − 62%), phenicols (6%; CI: 0.0 − 52%) 
and oxazolidinones (1%; CI: 0.0 − 36%). Additionally, 
resistance was reported for drug combinations including 
penicillin – cephalosporin (3%; CI: 0.0 − 17%) and peni-
cillin -aminoglycoside (4%; CI: 1 − 13%).

Regarding specific antibiotics, the Staphylococcus iso-
lates were fully susceptible to mupirocin, sulfamethoxa-
zole, sulphamethoxazole-trimethoprim, and tobramycin, 
while less than 10% resistance was reported for vanco-
mycin, linezolid, penicillin-streptomycin, oxacillin-cefox-
itin, chloramphenicol and streptomycin. A prevalence 
between 10% and 20% was registered for rifampin, imi-
penem, enrofloxacin, cefotaxime, amoxicillin-clavula-
nate, colistin, fusidic acid, gentamycin, and kanamycin, 
while between 20% and 50% prevalence was recorded 

Fig. 2  Graphical representation of number of studies conducted on antibiotic resistance in mammalian wild game species up to April 2023
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for novobiocin, cepalothin, ciprofloxacin, clindamycin, 
tetracycline, erythromycin and quinupristin-dalfopris-
tin. Moreover, the highest prevalence of resistance was 
observed for cefoxitin (55%), oxacillin (65%) and penicil-
lin (71%).

Antibiotic resistance genes were detected in 29.2% 
(CI: 12.9 − 48.2%) of the Staphylococcus isolates tested, 
and these included those encoding for macrolide resis-
tance (ermC, ermT and mphC), tetracycline resistance 
(tetL, tetK and tetM), vancomycin resistance (vanA, 
vanB) streptomycin resistance (str), methicillin resis-
tance (mecA and aacA-AphD), aminoglycoside resistance 
(aac(6´)-Ie-aph(2´´)-Ia) and beta-lactamase production 
(blaZ).

Antibiotic resistance in salmonella
Antibiotic resistance in Salmonella spp. isolates was 
reported by seventeen studies: from Europe [10], Africa 
[2], North America [3] and South America [2], and 14 

were included in the meta-analysis for phenotypic resis-
tance, while 5 were included for genotypic resistance 
(supplementary file 3).

Overall pooled prevalence of antibiotic resistance in 
Salmonella isolates was 69.9% (CI: 44.3 − 90.9%) and 
prevalence of MDR was 14.9% (CI: 3 − 31.8%). Animal 
species from which resistant Salmonella spp. were iso-
lated included sable antelopes (100%; CI: 2 − 100%), 
impalas (100%; CI: 2 -100%), royal antelopes (100%; CI:48 
− 100%), African giant rats (100%; CI: 2 − 100%), cane rats 
(100%; CI: 66 − 100%) and wild boars (68%: CI: 42 -89%).

All studies reported antibiotic resistance in Salmo-
nella enterica. The subspecies reported included S. 
enterica, S. diarizonae and S. salamae. Salmonella 
enterica subsp enterica serovars in which antibiotic resis-
tance was reported included: S. Typhimurium, S. Muen-
ster, S. Bardo, S. Enteritidis, S. Pomona, S. Roan, and S. 
Mbandaka.

Table 2  Predictors for prevalence of antibiotic resistance in wild game, analysis by mixed-effects Model (k = 73; tau^2 estimator: REML
Variable Level No. 

studies
Pooled prevalence based on the 
random effects model

Test for moderator association with 
resistance to antibiotics

Strains 
tested

No. 
resistant

Prevalence 
(95% CI)

QM (df) P-value tau2 H2 R2%

Study period 1.3130 (2) 0.5187 0.2226 82.09 0.00
Before 2000 2 74 39 0.73 (0.11 -1.00)
2000–2010 15 1067 471 0.47 (0.24–0.72)
2011–2020 56 5887 1812 0.63 (0.50–0.75)

Location 8.4122 (5) 0.1349 0.2092 72.32 4.85
Europe 53 5370 1826 0.58 (0.45–0.71)
Africa 9 497 263 0.88 (0.58 -1.00)
Asia 4 730 68 0.30 (0.01–0.76)
North America 5 310 106 0.36 (0.05–0.76)
South America 1 6 2 0.33 (0.04–0.78)
Oceania 1 115 115 1.00 (0.97–1.00)

Study setting 3.9287 (1) 0.0475* 0.2113 76.32 3.9
Remote 53 5405 1916 0.66 (0.54–0.78)
Close to humans/livestock 20 1623 438 0.41 (0.21–0.63)

Animal species 9.1823 (4) 0.0567 0.1997 44.81 5.70
Cervidae 28 1389 302 0.43 (0.28–0.64)
Suidae 51 4443 1507 0.56 (0.43–0.69)
Bovidae 16 402 85 0.68 (0.35–0.95)
Leporidae 7 103 103 1.00 (0.69 -1.00)
Muridae 5 308 222 0.80 (0.44 -1.00)

Bacteria species 3.9287 (1) 0.0475* 0.2113 76.32 3.90
Staphylococcus 10 673 246 0.69 (0.40–0.92)
Salmonella 14 790 511 0.67 (0.42–0.89)
E. coli 32 4710 1080 0.40 (0.25–0.55)
Enterococcus 9 610 292 0.71 (0.42–0.93)
Campylobacter 2 44 43 0.98 (0.47–1.00)
Yersinia 5 172 124 0.96 (0.62–1.00)
Listeria 1 29 26 0.90 (0.73–1.00)

CI = Confidence interval, QM = Coefficient of test for heterogeneity between subgroups, df = degrees of freedom, tau2 = estimated amount of residual heterogeneity, 
H2 = unaccounted variability / sampling variability, R2 = amount of heterogeneity accounted for, * = significant P-value
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Antibiotic resistance in Salmonella spp. was reported 
for 11 classes of antibiotics including; nitrofurans (50%; 
CI: 1 − 99%), macrolides (48%; CI: 12 − 86%), sulphon-
amides (35%; CI: 17 − 54%), tetracyclines (27%; CI: 9 
− 50%), polymyxins (20%; CI: 0 − 57%), penicillins (14%; 
CI: 3 − 31%), organic phosphonic acid (12%; CI: 5 − 24%), 
cephalosporins (9%; CI: 1 − 20%), aminoglycosides (7%; 
CI: 1 − 18%), phenicols (7%; CI: 0 − 27%) and fluoroqui-
nolones (5%; CI: 0 − 17%).

Salmonella isolates were fully susceptible to aztreo-
nam, imipenem, gentamycin, tobramycin, amikacin, 
ciprofloxacin, kanamycin, florfenicol, trimethoprim, 
azithromycin, and ceftriaxone. However, less than 10% 
resistance was registered for amoxicillin-clavulanic acid, 
cefotaxime, ceftazidime, nalidixic acid, chloramphenicol, 
sulfisoxazole, neomycin, norfloxacin, cephalothin and 
cefazolin. Additionally, prevalence of between 10% and 
20% was registered for ampicillin, sulphamethoxazole-
trimethoprim, enrofloxacin, colistin- and Fosfomycin 
while between 20 and 50% prevalence of resistance was 
enumerated for cefoxitin, streptomycin, tetracycline, 
ceftiofur, doxycycline, erythromycin, nitrofurantoin and 
penicillin G. Prevalence greater than 50% was observed 
for resistance to cephalexin (53%), sulphamethoxazole 
(75%), sulfadiazine-sulfamerazine-sulfamethazine com-
bination (96%), chloramphenicol (100%), spiramycin 
(100%) and tilmicosin (100%).

Antibiotic resistance genes were detected in 27.4% (CI: 
16.4 − 39.7%) of the isolates, and these included those 
encoding for streptomycin resistance (strB and strA), 
tetracycline resistance (tetA, tetB and tetQ), quinolone 
resistance (gyrA), aminoglycoside resistance (aadA1 and 
aac(6′)-Iaa), sulphonamide resistance (sul1, sul3) fosfo-
mycin resistance (fosA7), vancomycin resistance (vanA), 
macrolide resistance (ermB) and beta-lactamase produc-
tion (blaTEM).

Antibiotic resistance in escherichia coli
Antibiotic resistance in Escherichia coli isolates was 
reported by 44 studies of which 32 were included in the 
meta-analysis for phenotypic resistance, while 20 were 
included for genotypic resistance. Thirty-one studies 
reported MDR strains (supplementary file 4).

The overall pooled prevalence of phenotypic antibi-
otic resistance in E. coli was 39.5% (CI: 23.9 − 56.4%) and 
prevalence of MDR was 12.5% (CI: 4.5 − 23.2%). Animal 
species from which resistant E. coli was isolated included; 
waterbuck (100%; CI: 16 -100%), royal antelope (100%; 
CI: 91 − 100%), African giant rat (100%; CI: 16 − 100%), 
cane rat (100%; CI: 19 − 100%), African buffalo (75% ; 
CI: 35 − 97%), impala (73% ; CI: 45-92%), reindeer (67% 
; CI: 38 − 88%), mouflon (67%; CI: 0.0 − 99%), European 
wild rabbits (56%; CI: 3 − 100%), wild boar (37%; CI: 19 
-57%), red deer (18%; CI: 0.0 − 57%), fallow deer (11% ; 

CI: 1 − 33%), roe deer (8%: CI: 0.0 − 65%) and sika deer 
(5%; CI:4 − 8%).

Antibiotic resistance in E.coli was reported for 11 
classes of antibiotics including; macrolides (19%; CI: 0.0 
− 58%), monobactams (17%;CI: 0.0 − 48%), penicillins 
(13%; CI: 6 − 21%), cephalosporins (13%; CI: 7 − 20%), thi-
amphenicols (8%; CI: 0.0 − 49%), tetracyclines (13%; CI: 
5 − 24%), sulphonamides (11%; CI: 5 − 20%), fluoroqui-
nolones (5%; CI: 0.0 − 11%), aminoglycosides (3%; CI:0.0 
− 7%), amphenicols (2%; CI: 0.0 − 10%) and organic phos-
phonic acids (1%; CI: 0.0 − 26%).

E. coli isolates were fully susceptible to meropenem, 
kanamycin, colistin, amikacin, cefoxitin, imipenem, enro-
floxacin, florfenicol, neomycin, tigecycline, apramycin, 
tulathromycin, danofloxacin, spectinomycin and tylosin. 
Less than 10% resistance was registered for nalidixic acid, 
sulphamethoxazole, cefazolin, gentamycin, ciprofloxa-
cin, fosfomycin, streptomycin, amoxicillin-clavulanic 
acid, tobramycin, sulfisomidine, cephalothin, piperacil-
lin, ampicillin-sulbactam, cotrimazole, cefpodoxime and 
florfenicol. In contrast, prevalence of between 10% and 
20% was recorded for aztreonam, ampicillin, ceftazidime, 
cefotaxime, tetracycline, trimethoprim-sulphamethoxa-
zole, trimethoprim, ceftriaxone, ceftiofur and norfloxa-
cin. Moreover, 21–50% prevalence of resistance was 
enumerated for amoxicillin, sulphathiazole, levofloxa-
cin, sulfisoxazole and sulfadimethoxin, while prevalence 
greater than 50% was observed for resistance to cefepime 
(70%), cephalexin (87%) and erythromycin (100%).

Antibiotic resistance genes were detected in 31.2% (CI: 
25.1% − 37.6%) of E. coli isolates tested. Genes detected 
included those encoding for aminoglycoside resistance 
(aadA1, aadA2 and aac [3]-II), sulphonamide resis-
tance (sul1, sul2 and sul3), tetracycline resistance (tetA, 
tetB, tetG and tetR), aminoglycoside resistance (aac [3]-
IId, aph(3”)-Ib, aph [6]-Id, aadA1 and aadA2), phenicol 
resistance (floR and cmlA1), trimethoprim resistance 
(dfrA1, dfrA5, dfrA7, dfrA12, dfrA14 and dfrA17), mac-
rolide resistance (mphA), gentamycin resistance (qacG2), 
quinolone resistance (qnrB19, qnrS, gyrA and gyrA87), 
ampicillin resistance (AmpC, AmpH and blaCMY-2), 
streptomycin resistance (strA, strB), colistin resistance 
(mcr1), multidrug resistance ( mdfA) and beta-lacta-
mase production (blaSHV-12, blaSHV-28, blaTEM-1a, 
blaTEM-1b, blaCTX-M-1, blaCTX-M2, blaCTX-M-14, 
blaCTX-M-15, blaCTX-M-55 and blaCTX − M−245).

Antibiotic resistance in enterococcus
Twelve [12] studies reported antibiotic resistance in 
Enterococcus spp. isolates and 9 were included in the 
meta-analysis for phenotypic resistance, while 4 were 
included for genotypic resistance. Nine [9] studies 
reported MDR strains (supplementary file 5).
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The overall pooled prevalence of phenotypic antibiotic 
resistance in Enterococcus spp. was 71% (CI: 44.1 − 92%) 
and prevalence of MDR was 26.7% (CI: 5.4 − 56%). Ani-
mal species from which resistant Enterococcus strains 
were isolated included roe deer (100%; CI: 90 − 100%), 
wild boar (84%; CI: 60 − 98%), red deer (74%; CI: 62 
− 83%), European wild rabbits (70%: CI: 30 − 99%) and 
African buffalo (1%; CI: 0.0 − 3%).

Antibiotic resistance was reported in seven Enterococ-
cus species including E. faecium, E. faecalis, E. durans, E. 
casseliflavus, E. avium, E. hirae, E. mundtii. One study 
from South Africa did not specify the Enterococcus spe-
cies for which antibiotic resistance was reported and this 
was noted as “Enterococcus sp.”

Antibiotic resistance in Enterococcus spp. was reported 
for 14 classes of antibiotics including; nitrofurans (67%; 
CI: 52 − 79%), carbapenems (44%; CI: 20 − 70%), organic 
phosphonic acids (43%; CI: 29 − 58%), macrolactams 
(39%; CI: 26 − 54%), streptogramins (36%; CI: 15 − 59%), 
tetracyclines (32%; CI: 16 − 51%), macrolides (22%; CI: 8 
− 41%), penicillins (19%; CI: 5 − 39%), fluoroquinolones 
(15%;CI: 3 − 35%), aminoglycosides (9%; CI: 2 − 20%), 
sulphonamides (8%; CI: 0.0 − 39%), glycopeptides (4%; 
CI: 0.0 − 16%), oxazolidinones (4%; CI: 0.0 − 40%) and 
amphenicols (3%; CI: 0.0 − 18%).

Enterococcus spp. isolates were fully susceptible to 
sulphamethoxazole-trimethoprim, cefoxitin and pris-
tinamycin, while less than 10% resistance was registered 
for vancomycin, teicoplanin, gentamycin, chlorampheni-
col, florfenicol, linezolid and norfloxacin. In contrast, 
prevalence of between 10% and 20% was recorded for 
ampicillin, streptomycin, ciprofloxacin, kanamycin, and 
trimethoprim, while 21–50% prevalence of resistance was 
enumerated for tetracycline, erythromycin, quinupristin-
dalfopristin, tigecycline, rifampicin, fosfomycin, penicil-
lin and imipenem. Highest prevalence of resistance was 
recorded for nitrofurantoin (67%) and amoxicillin-clavu-
lanic acid (75%).

Genes encoding antibiotic resistance were detected in 
52.2% (CI: 33.4 − 70.7%) of Enterococcus isolates tested. 
Genes detected included those encoding for tetracy-
cline resistance (tetM, tetL, tetK and Tn916), macrolide 
resistance (ermB and ermC), gentamycin resistance (acc 
(6’)-aph (2’)), kanamycin resistance (aph(3’)-IIIa), amino-
glycoside resistance (ant [6]-Ia [3] and aac (6′)-aph (2″)), 
streptogramins resistance (vatD) and vancomycin resis-
tance (vanA and vanB).

Antibiotic resistance in yersinia
Six studies reported antibiotic resistance in Yersinia spp. 
isolates and five were included in the meta-analysis for 
phenotypic resistance, while none was included for geno-
typic resistance. Five reported MDR strains (supplemen-
tary file 6).

The pooled prevalence of phenotypic antibiotic resis-
tance in Yersinia spp. was 95.5% (CI: 76.8 − 100%) and 
prevalence of MDR was 67% (CI: 12.1 − 100%). Animal 
species from which resistant Yersinia strains were iso-
lated included alpine ibex, red deer, roe deer, wild boar, 
fallow deer, cane rats, royal antelope, and waterbuck. 
As each animal species was reported by only one study, 
meta-analysis with animal species as moderator was not 
performed.

Antibiotic resistance was reported in four Yersinia spe-
cies including Yersinia enterocolitica, Yersinia pseudotu-
berculosis, Yersinia aldovae and Yersinia federiksenii.

Antibiotic resistance in Yersinia spp. was reported for 
eight classes of antibiotics including; macrolides (100%; 
CI: 48 − 100%), penicillins (85%; CI: 61 − 100%), cepha-
losporins (42%; CI: 20 − 66%), aminoglycosides (32%; CI: 
8 − 61%), sulphonamides (25%; CI: 2 − 58%), fluoroqui-
nolones (10%; CI: 0.0 − 34%), amphenicols (6%; CI: 0.0 
− 46%) and tetracyclines (6%; CI: 0.0 − 43%).

Yersinia spp. isolates were fully susceptible to enroflox-
acin and norfloxacin, while less than 10% resistance was 
registered for chloramphenicol and tetracycline. In con-
trast, prevalence of between 10% and 20% was recorded 
for cefotaxime, ciprofloxacin, cefuroxime, triple-sulfa, 
sulfisoxazole and ceftiofur, while 21–50% prevalence of 
resistance was enumerated for streptomycin, sulpha-
methoxazole-trimethoprim, nalidixic acid, gentamycin, 
and ceftazidime. Highest prevalence of resistance was 
recorded for kanamycin (56%), amoxicillin-clavulanic 
acid (56%), cephalexin (80%), ampicillin (96%), erythro-
mycin (100%) and cephalothin (100%).

Antibiotic resistance in other bacteria species
Resistance to antibiotics was also reported for Campy-
lobacter spp. and Listeria spp. However, there were not 
enough studies to allow performance of meta-analysis for 
these species. Antibiotic resistance in Campylobacter was 
reported in four studies in wild boars, red deer, mouflon, 
fallow deer, and reindeer from Europe. Species studied 
included C. lanienae, C. coli, C. jejuni, C. hyointestinalis. 
Similarly, one study reported 89.7% antibiotic resistance 
in Listeria spp. isolated from wild boars in the United 
States of America.

Discussion
The present study reports the occurrence and estimated 
prevalence of antibiotic resistance in bacteria isolated 
from mammalian wild game from various parts of the 
world.

Prior to the 2000s, there were fewer studies reporting 
antibiotic resistance in these game species. However, 
an upward trend in the number of publications of such 
studies was observed. This points to an increase in sci-
entific interest in the subject. Moreover, the evolution 
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of detection methodologies over the years could have 
enhanced detection hence an increase in studies of AMR 
in different settings including in wildlife.

There were differences in the number of publications 
on AMR in mammalian wild game by countries and con-
tinents, with most originating from Europe. Antimicro-
bial resistance prevalence data are limited, particularly 
in low- and middle-income countries. Torres, Carvalho 
[88] observed that 72% of research outputs on AMR in 
wildlife were from European countries, more specifically 
Spain, Portugal, United Kingdom, Sweden, Czech Repub-
lic, and Italy. Differences in research priorities at country 
or continental level directly impact the kind of research 
conducted within a country /territory [89]. Europe as a 
continent has alongside other research areas, prioritized 
AMR research in wildlife, most importantly the mam-
malian game species and with this it has developed a 
research fund portfolio and plans to provide support, 
along with the required technology, as compared to other 
parts of the world [90].

It was observed that wild boars, red deer, and roe deer 
were the most studied animal species while very few 
studies on antibiotic resistance focused on other wild 
game species. This trend is mostly attributed to gov-
ernments prioritizing control of wild boar populations 
across Europe and the Americas, encouraging hunting 
and elimination of these animals, as well as research into 
possible public health impacts of such invasive animal 
species [91].

All studies applied at least one of the methods recom-
mended by the European Committee on Antimicrobial 
Susceptibility Testing (EUCAST) for detection of antibi-
otic resistance, with most (55%) applying the disk diffu-
sion method. Disk diffusion is however only suitable for 
screening, while confirmation requires detection of resis-
tance genes by molecular methods [92]. In this review, 
15% of the studies applied broth microdilution while 
22.5% combined either disk diffusion or broth micro-
dilution with molecular methods, while 6.25% applied 
only molecular methods to detect resistance genes. It 
was noted that resistance to certain antibiotics were not 
detected phenotypically but genes conferring resistance 
to the same antibiotics were detected in isolates. Differ-
ences in test results using different detection methods 
may arise due to heterogeneous expression of resistance 
as reported by [93]. This confirms the importance of 
applying confirmatory detection methods and using mul-
tiple detection methods in AMR surveillance.

The results of the meta-analysis showed that 59.8% of 
the bacteria isolates from a wide array of mammalian 
wild game species were resistant to at least one antibi-
otic and 17.2% were MDR, indicating widespread occur-
rence of AMR among mammalian wild game. Multidrug 
resistant organisms are associated with high morbidity 

and high mortality rates among human patients, requir-
ing longer treatment regimens and hospitalizations [94]. 
Moreover, selection pressure imposed by antibiotics can 
lead to the survival, proliferation, and dominance of more 
virulent strains of bacteria within a population. The same 
effect may be amplified because of co-selection of resis-
tance and virulence genes [95, 96]. Some of the most crit-
ical MDR organisms were reported in mammalian wild 
game species, a great public health concern for consum-
ers and handlers of game meat. The AMR prevalences 
reported in the review figures are in agreement with the 
report on AMR in wildlife by [94]. Even though this may 
be interpreted as high, the prevalence is much lower than 
prevalences in domestic animals as highlighted by [97] 
and [98].

All the bacteria species for which antibiotic resistance 
was reported are known to potentially cause serious ill-
nesses in humans [99]. However, in this review it was 
observed that majority of the studies focused on Esch-
erichia coli (44 studies) and Salmonella spp. (17 studies) 
while there were barely any studies conducted on Liste-
ria spp. (1 study) and Campylobacter spp. (4 studies), and 
no studies on other emerging food borne bacteria. This 
therefore leaves a knowledge gap on the epidemiology of 
important emerging food borne bacteria that can poten-
tially pose a public health risk in consumers and handlers 
of mammalian wild game.

Escherichia coli is an important bacterium that resides 
in the lower intestines of warm-blooded animals and 
humans. Even though most serovars are considered 
commensal and harmless, some have acquired patho-
genic or toxigenic virulent factors, causing illnesses 
ranging from mild diarrhea to severe colitis that can be 
life threatening. Moreover, it has also been reported to 
cause extraintestinal illnesses including urinary tract 
infections that lead to acute cystitis and pyelonephritis, 
requiring urgent treatment with antibiotics [100]. Gen-
erally, E. coli is intrinsically susceptible to most antibi-
otics but with a great capacity to amass resistance genes 
through horizontal gene transfer. Of greatest concern is 
the ability of E. coli to acquire genes coding for extended-
spectrum β-lactamases, carbapenemases, 16  S rRNA 
methylases, plasmid-mediated quinolone resistance 
(PMQR) genes, and mcr genes, resulting in resistance 
to cephalosporins, penicillins, monobactams, carbapen-
ems, aminoglycosides, quinolones and fluoroquinolones, 
and polymyxins, most of which are clinically important 
antibiotics and may serve as last line treatment choices 
[101]. A 39.5% overall prevalence of antibiotic resistance 
and 12.5% prevalence of MDR in mammalian wild game 
species is reported in this review, with several resistance 
genes including those coding for resistance to amino-
glycosides, sulphonamides, tetracyclines, aminoglyco-
sides, phenicols, trimethoprim, macrolides, quinolones, 
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ampicillin and polymyxins. Additionally, genes coding for 
MDR and beta-lactamase production were also reported. 
The presence of a wide array of resistance genes in wild 
game shows that wild game may play a vital role in dis-
semination of resistant organisms to the environment 
and humans.

Salmonella was the second most studied genera of 
bacteria, and all studies reported antibiotic resistance 
in Salmonella enterica with a 69.9% pooled prevalence 
of resistance to at least one antibiotic and 14.9% MDR. 
Salmonella enterica infections are often self-limiting and 
do not require treatment, but systemic infections, mostly 
in immunocompromised individuals, can be fatal [102]. 
As Salmonella has increasingly exhibited resistance to 
common antibiotics like chloramphenicol, ampicillin and 
trimethoprim-sulphamethoxazole, its treatment is now 
dependent on more extended spectrum antibiotics such 
as cephalosporins and fluoroquinolones [103]. However, 
the emergence of MDR S. enterica serovars, including 
those resistant to quinolones (fluoroquinolones) and the 
later generation cephalosporins has become a serious 
public health concern globally. The findings of the pres-
ent study are coherent with scientific literature regarding 
resistance of Salmonella to antibiotics. Several resistance 
determinants in Salmonella isolates from wild game, 
including those that confer resistance to fluoroquino-
lones, extended spectrum β-lactams, aminoglycosides, 
tetracyclines, and chloramphenicol, macrolides, colistin, 
and almost all common antibiotics were reported in wild 
game species.

Staphylococcus spp, especially S. aureus, is a potential 
human pathogen commonly implicated in a variety of 
infectious diseases, such as skin and soft tissue infections, 
endocarditis, osteomyelitis, bacteremia, and lethal pneu-
monia. These diseases can be life-threatening, and urgent 
and effective treatment is paramount [104]. However, the 
emergence of highly resistant strains like the methicillin 
resistant Staphylococcus aureus (MRSA) poses a chal-
lenge to treatment. This strain is almost always resistant 
to penicillins, cephalosporins, chloramphenicol, lincomy-
cin, aminoglycosides, tetracyclines, macrolides, quino-
lones, sulfonamides, and rifampicin [105]. On a positive 
note, none of the studies included in this review reported 
MRSA. Currently, the most important drugs used in the 
treatment of Staphylococcus infections include vanco-
mycin, daptomycin, linezolid [106, 107]. In this review, 
a 69.3% pooled prevalence of antibiotic resistance was 
reported for 15 species of Staphylococcus isolated from 
wild game. Highest resistance was registered for peni-
cillin (71%), oxacillin (65%) and cefoxitin (55%) while 
the least was against oxazolidinones (Linezolid) (1%), 
Phenicols (6%), glycopeptides and (vancomycin) (7%). 
Although the prevalence of resistance to linezolid and 
vancomycin in this case is low, it is a cause for concern as 

they are some of the few available effective therapies for 
Staphylococcal infections. It is worthwhile to note that 
even though resistance was high for penicillins, there was 
less resistance to penicillin combinations with other drug 
classes, for example there was less than 10% resistance 
for penicillin-streptomycin, oxacillin-cefoxitin. This sug-
gests that combination therapies can be one of the ways 
to address the AMR problem in Staphylococcus.

Antibiotic resistance was reported in seven species of 
Enterococcus, including the two most clinically impor-
tant species, E. faecalis and E. feacium. Enterococcus 
spp. are known to exhibit high level resistance to most of 
the commonly used antibiotics including penicillins and 
aminoglycosides. They are also known to be tolerant to 
vancomycin and β-lactam antibiotics [108, 109]. Recog-
nizing the problem of vancomycin resistance in entero-
cocci, newer agents including quinupristin-dalfopristin, 
linezolid, daptomycin and tigecycline that have activ-
ity against vancomycin-resistant enterococci have been 
developed. Unfortunately, just like the earlier antibiot-
ics, resistance to these agents is already being reported 
[110]. Studies included in our review reported resistance 
of Enterococcus spp to vancomycin and up to 50% resis-
tance to all the new antibiotics that are supposed to act 
against vancomycin resistant Enterococcus. On a positive 
note, research showed that Trimethoprim-sulfamethox-
azole seems active against enterococci. Also, treatment 
may be achievable with a combination of aminoglycoside 
and β-lactam antibiotics [109]. In our review, Enterococ-
cus spp were fully susceptible to Trimethoprim-sulfa-
methoxazole. We however cannot confirm the activity 
of combination treatments as none of the included stud-
ies performed susceptibility tests for drug combinations 
combined drugs.

Yersinia, Campylobacter and Listeria are some of the 
most important food-borne bacterial pathogens and ill-
nesses due to these pathogens are the topmost frequently 
reported globally [111, 112]. Antibiotic resistance in 
these pathogens have extensively been studied and preva-
lences ranging between 50 and 100% [113], up to 83.6% 
[114] and up to 100% [115], have been reported for Cam-
pylobacter, Listeria and Yersinia respectively, in livestock. 
This review reports similar prevalences of antibiotic 
resistance in Campylobacter, Listeria and Yersinia iso-
lated from mammalian wild game.

The occurrence of AMR in wildlife is often interpreted 
as a consequence of anthropogenic impact in the areas 
described or of inadequate management of antibiotic 
residues of human and/or animal origin [116, 117]. In 
this review, a significantly higher prevalence of antibi-
otic resistance was recorded in isolates from mamma-
lian wild game in remote settings than those from areas 
close to human/livestock activities. A similar report was 
made by Cristóbal-Azkarate, Dunn [118] in a study on 
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non-human primates in Mexico, as well as by [119]. The 
AMR patterns may be an indicator of specific resistance 
traits in the environment, and a continuous monitoring 
of the presence of these bacteria in wild mammals and 
their role as a reservoir and in the dispersal of resistant 
bacteria even far from areas of high anthropogenic activ-
ity could be useful, given their ability to move over long 
distances. Notwithstanding, studies including that of 
Miller, Gammon [120] have also established that certain 
resistant bacteria are ubiquitous in natural ecosystems, 
with species like MDR E. coli being isolated from Antarc-
tic waters, thus it is possible that wildlife can also acquire 
resistant strains- of bacteria from their environment 
through horizontal gene transfers, even in the absence of 
anthropic activities.

The world health organization advisory group on inte-
grated surveillance of antimicrobial resistance (AGISAR) 
classified antimicrobials as “critically important”, “highly 
important” and “important” based on two criteria: (1) 
They are the sole or one of the limited available therapies 
for treatment of serious bacterial infections in humans, 
and (2) are used to treat infections caused by bacteria 
that are possibly transmitted from non-human sources or 
with resistance genes from non-human sources. Critically 
important antibiotics meet criteria 1 and 2, highly impor-
tant antibiotics meet either criteria 1 or 2, while impor-
tant antimicrobials do not meet either criterion but are 
useful for treatment of human infections [121]. From this 
review, majority of the drugs for which resistance was 
reported fall under the critically important and highly 
important group. The presence of resistance to critically 
important and highly important antibiotics like cephalo-
sporins, vancomycin and fluoroquinolones in wild game 
is a cause for concern as they could potentially pose a 
dilemma in treatment of infections for which they are the 
sole available treatment once humans acquire such resis-
tant strains through consumption of contaminated wild 
game meat. Moreover, in all species of bacteria studied, 
substantial resistance to carbapenems, the treatment of 
choice for serious infections with ESBL-producing bacte-
ria was observed. This has a serious implication on future 
management of such infections as selection pressure 
could accelerate the development and amplification of 
carbapenemase resistance in the wild and onward trans-
mission through the wild game food chain.

Limitations
This systematic review and meta-analysis aimed at esti-
mating the global prevalence of antibiotic resistance in 
mammalian wild game. However, it may have overes-
timated /underestimated the prevalence due to lack of 
representation of studies from certain countries. Also, 
the lack of uniformity and differences in test parameters 
of the susceptibility test methods applied by the different 

studies, as well as studies with small sample sizes can 
introduce bias and increase variability in a meta-analysis 
leading to over / under estimation of prevalence.

Conclusion and recommendations
This systematic review and meta-analysis established 
the occurrence of antibiotic-resistant bacteria, including 
MDR strains in mammalian wild game species. However, 
the source of the resistant organisms can only be specu-
lated. To this end, it is imperative that a combined effort 
of environmental, veterinary, and medical sciences be 
applied in surveillance and epidemiological/ecological 
studies of antibiotic resistance in a One-Health approach. 
Along with this, effective detection mechanisms ought 
to be applied in surveillance of AMR. As noted in this 
review, in some studies, susceptibility tests did not detect 
resistance to certain antibiotics but resistance genes 
to the same were later identified by molecular meth-
ods. Adoption of more advanced approaches therefore 
greatly enhances AMR surveillance. The carriage of resis-
tant bacteria by mammalian wild game species does not 
inevitably point to their role in transmission of resistant 
bacteria to humans or livestock. This still requires more 
in-depth studies to understand their role in the AMR 
transmission pathway, and to this effect, it would be 
worthwhile to undertake studies aimed at assessing the 
risk of AMR transmission and its linkage to hunting and 
trapping practices, as well as handling and consumption 
of wild game meat.

As existing studies focused only on a few species of 
bacteria, we recommend that studies be conducted to 
cover a wider diversity of bacteria, including commensals 
as they may still carry and spread resistance genes that 
could be acquired by pathogenic bacteria in domestic 
animals and humans.

Finally, this review highlighted the possible contami-
nation of wildlife habitats with resistant bacteria based 
on the high prevalence of antibiotic resistance in mam-
malian wild game living in remote locations. Based on 
this result, more emphasis should be placed on the dis-
closure of environmental issues related to anthropogenic 
waste management to minimize the contamination and 
spread of resistant bacteria in wild habitats. Along with 
this, surveillance for AMR should be expanded to cover 
more ecosystems including sylvatic habitats. Mapping 
and tracking movements of wild mammals can enable a 
more detailed understanding of the sources /origins of 
resistant bacteria in the wild. There would be a need for 
continuous monitoring of the presence of these bacteria 
in wild mammals and their role as reservoirs and in the 
dispersal of resistant bacteria even far from areas of high 
anthropogenic activity, given their ability to move over 
long distances.
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