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Abstract
Background  Foot-and-mouth disease virus (FMDV) vaccine development can be a laborious task due to the 
existence of various serotypes and lineages and its quasi-species nature. Immunoinformatics provide effective and 
promising avenue for the development of multiepitope vaccines against such complex pathogens. In this study, we 
developed an immunoinformatic pipeline to design a heptavalent multi-epitope vaccine targeting circulating FMDV 
isolates in Egypt.

Result  B and T-cell epitopes were predicted and selected epitopes were proved to be non-allergenic, non-toxic, with 
high antigenicity, and able to induce interferon-gamma response. The epitopes were used to construct a vaccine by 
adding suitable linkers and adjuvant. Prediction, refinement, and validation of the final construct proved its stability 
and solubility, having a theoretical isoelectric point (PI) of 9.4 and a molecular weight of 75.49 kDa. The final construct 
was evaluated for its interaction with bovine toll-like receptor (TLR) 2 and 4 using molecular docking analysis and 
molecular dynamic simulation showed high binding affinity, especially toward TLR4. MM/GBSA energy calculation 
supported these findings, confirming favorable energetics of the interaction. Finally, the DNA sequence of the vaccine 
was cloned in pET-30a (+) for efficient expression in Escherichia coli.

Conclusion  The inclusion of computational and immunoinformatic approaches will ensure cost-effectiveness and 
rapid design of FMDV vaccine, decrease wet lab experimentation, and aid the selection of novel FMDV vaccines. While 
the vaccine demonstrates promising in-silico results, experimental assessment of vaccine efficiency is required.
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Background
Foot-and-mouth disease virus (FMDV) is one of the 
highly endemic viruses that can infect various cloven-
hoofed species. FMDV causes Foot-and-mouth disease 
(FMD), a non-fatal disease in adult animals, but has a 
high mortality rate in younglings and causes significant 
animal abortions [1, 2]. Despite the low level of viral 
mortality in adult animals, there is a high proportion of 
infectivity between animals in proximity, due to the easy 
spread of the virus between them [3]. FMD was reported 
to cause 8–22 billion USD in economic losses each year 
in endemic countries [4].

FMDV consists of positive-sense single-stranded RNA 
with around ~ 7000 nucleotides (nt) open reading frame, 
that encodes for all the structural and non-structural 
proteins. Other regions for the single-stranded RNA are 
designated for the 5` and 3` untranslated regions that 
measure around 1300 and 90 nt in length, respectively [5, 
6]. The viral open reading frame is translated upon enter-
ing the mammalian cell into a polyprotein that is cleaved 
into 15 mature proteins divided into structural (VP1, 
VP2, VP3, and VP4) -that assemble to form the viral cap-
sid- and non-structural proteins (Lab, Lb, 2  A, 2B, 2  C, 
3 A, 3B1, 3B2, 3B3, 3 C, and 3D) [7].

FMDV has seven different serotypes (A, O, Asia1, C, 
SAT1, SAT2, and SAT3) where SAT serotypes are local-
ized mainly in Africa. This classification of FMDV was 
developed based on serological analysis [8] and sup-
ported by VP1 sequence analysis [9, 10]. RNA replica-
tion errors [11], genome recombination [12, 13], and 
selection pressure imposed by the host immune system 
[14] are responsible for the high sequence variability of 
the FMDV genome, sequentially caused the emergence 
of different serotype variants. Most sequence variability 
is present in the structural protein-coding sequence, with 
VP1 showing the lowest identity scores between differ-
ent serotypes ranging from 50 to 70%. Whereas the most 
variabilities were found in the exposed parts of proteins 
(VP1-3) of the viral capsid, VP4 protein showed less vari-
ability within structural proteins [14].

The production of an effective FMDV vaccine that 
induces sterile and solid immunity has not been achieved 
despite the ongoing research effort during the last 
decades, resulting in intensive viral spread, especially 
in enzootic countries [15]. The lack of an effective vac-
cine can be reasoned for viral quasi-species and the 
emergence of new FMDV variants every year. The high 
variabilities among FMDV serotypes restrain the abil-
ity to reach a universal vaccine that provides reliable 
protection from the seven known viral serotypes [16]. 
Authorities resort to use vaccines consisting of different 
formulations of inactivated virus serotypes [17]. Cur-
rent approaches for developing FMDV vaccine aim to 

produce multi-epitope vaccines (MEV) that provide a 
solid immune response with a low risk of infectivity.

The wide availability of different databases for most 
biological information, such as molecular biology and 
genetics, enabled the development of various computa-
tional tools for in-silico experimentation to be conducted 
before application in a laboratory environment [18, 19]. 
Improvement of computational power and introduction 
of Immunoinformatics traverse the paradigm of vaccine 
design to sequence-based techniques instead of tradi-
tional methodologies [20]. In addition to recombinant 
DNA technology, immunoinformatics helped in the 
preparation of new peptides with better antigenic and 
immunological characteristics increasing the efficiency of 
the designed vaccine [21, 22].

Immunoinformatics, with the aid of machine learning 
and artificial neural network models, have a great role in 
the selection of those peptides for different immunocytes 
with high prediction specificity and sensitivity [23–25]. 
In-silico prediction of effective epitopes can have a huge 
impact in decreasing wet lab experiments and in turn, 
increasing vaccine design efficiency [26]. Different statis-
tical models were developed and validated to evaluate the 
designed peptides based on the genomic and amino-acid 
sequence variability [27–29].

In this study, we harnessed the power of immunoin-
formatics to develop and evaluate a new FMDV multi-
epitope-based vaccine for circulating serotypes in Egypt. 
Our workflow pipeline (Fig. 1) starts with the identifica-
tion of efficient structural protein epitopes for B and T 
cells. Selected epitopes are connected through specific 
protein linkers to each other and to the adjuvant for the 
generation of MEV. The proposed pipeline provides a 
good pathway for the development of the FMDV vaccine 
industry and increases the knowledge of FMDV control.

Methods
Protein sequence retrieval
Complete FMDV proteomes of serotypes A, O and SAT2 
were retrieved from the National Center of Biotechnol-
ogy Information (NCBI) protein database in FASTA 
format (https://www.ncbi.nlm.nih.gov, accessed on 15 
February 2022) (Table 1). All amino acid sequences were 
trimmed to include only the structural proteins (VP1, 
VP2, and VP3). The trimmed amino acid sequences were 
later used for epitope prediction.

Epitope prediction
Cytotoxic T lymphocytes (CTL)
Epitopes of the CD8 + T cell were predicted using major 
histocompatibility I (MHC-I) binding prediction tool, 
immune epitope database (IEDB) webserver, ​(​​​h​t​t​p​:​/​/​t​o​o​l​
s​.​i​e​d​b​.​o​r​g​/​m​h​c​i​/​​​​​)​. The web tool depends on the (NetMH-
Cpan EL 4.1) updated version, which has been trained in 

https://www.ncbi.nlm.nih.gov
http://tools.iedb.org/mhci/
http://tools.iedb.org/mhci/
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extended MHC-I binding affinity, and multi and single-
allelic eluted ligands data from different public domains 
[30]. The tool’s machine learning algorithm was also 
updated from NNAlign to NNAlign_MA to include the 
multi-allelic MHC data [30, 31]. Available Bovine MHC-I 
alleles in the IEDB database (Table s1) were aligned 
against the query FMDV protein sequences, and data less 
than the percentile rank threshold (< 0.05) were selected.

Helper T lymphocytes (HTL)
NetMHCIIpan 2.1 server (​h​t​t​p​​s​:​/​​/​s​e​r​​v​i​​c​e​s​​.​h​e​​a​l​t​h​​t​e​​c​h​
.​​d​t​u​​.​d​k​/​​s​e​​r​v​i​​c​e​.​​p​h​p​?​​N​e​​t​M​H​C​I​I​p​a​n​-​2​.​1) was used to 
predict CD4 + T cell epitopes. The server uses artificial 
neural networks (ANN) that have been trained in more 
than 200,000 randomly selected peptides [32]. The server 
was selected because it includes Bovine leukocyte alleles 
(BoLA) of MHC-II (i.e., BoLA-DRB3) (Table s2). One of 
three parameters was used for the selection of epitopes 
that may have a strong binding affinity with selected 
MHC-II alleles. These parameters are binding affinity 

Table 1  Protein sequences retrieved from the NCBI protein 
database
Serotype Topotype Lineage Isolate Accession 

no.
Length 
(amino 
acid)

O East Africa 
3 (EA-3)

- ETH/9/2019 QNT13150 734

Middle 
East- 
South Asia 
(ME-SA)

- O/manisa/87 AAT01766 734

Middle 
East- 
South Asia 
(ME-SA)

PanAsia-2 O/
IRN/8/2005

AMR58284 734

A Asia Iran05 A/SIN/PAK/
L693/2009

AEB02102

Africa G-VII A/
UGA/13/66

AGO58325

Africa GIV A/SUD/3/77 AGO58316
SAT 2 VII Lib-12 EGY/1/2018 QNT13156 740

VII Ghb-12 EGY/9/2012 AFP33712 740

Fig. 1  Illustration of the study workflow

 

https://services.healthtech.dtu.dk/service.php?NetMHCIIpan-2.1
https://services.healthtech.dtu.dk/service.php?NetMHCIIpan-2.1
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(IC50), percentile rank, and prediction score with thresh-
olds of < 50 nM, < 0.5, and > 0.9, respectively.

B-cells
Linear B-cell epitopes were predicted using the ABCpred 
web tool (​h​t​t​p​​:​/​/​​c​r​d​d​​.​o​​s​d​d​​.​n​e​​t​/​r​a​​g​h​​a​v​a​/​a​b​c​p​r​e​d​/). 
ABCpred uses ANN to predict B-cell epitopes depend-
ing on four metrics generated during the prediction pro-
cess, precision, sensitivity, positive predictive value, and 
specificity. The prediction accuracy of the webtool model 
is 65.93% with the use of the cross-validation fold [33]. 
The FASTA sequences of all selected FMDV serotypes in 
the study were used to predict the B-cell epitopes, with a 
threshold of > 0.5 and peptide length of 16 mer.

Allergenicity, toxicity, antigenicity, and conservancy 
analysis of epitopes
Selected epitopes were evaluated for their antigenicity 
using the Vaxijen v2.0 server (​h​t​t​p​​:​/​/​​w​w​w​.​​d​d​​g​-​p​​h​a​r​​m​f​a​
c​​.​n​​e​t​/​v​a​x​i​j​e​n​/) by default score of > 0.4 for the antigenic 
epitope [34, 35]. Peptides that showed no antigenicity or 
value near the threshold were discarded.

Allergenicity and toxicity of the selected epitopes were 
identified using the AllerTop server (​h​t​t​p​​:​/​/​​w​w​w​.​​d​d​​g​-​p​​h​
a​r​​m​f​a​c​​.​n​​e​t​/​A​l​l​e​r​T​o​p​/) [36] and ToxinPred server (​h​t​t​p​​:​
/​/​​c​r​d​d​​.​o​​s​d​d​​.​n​e​​t​/​r​a​​g​h​​a​v​a​/​t​o​x​i​n​p​r​e​d​/) [37], respectively. 
Epitopes that were identified as allergenic or toxic were 
discarded.

High-level antigenic epitope conservancy is required 
to ensure that the vaccine can provide wider protection 
against different strains. Hence, the predicted epitopes 
were compared against 150 amino acid sequences for 
each serotype retrieved from the NCBI protein database 
using the BLASTp tool against the FMDV serotype P1 
protein. The epitope conservancy analysis tool from the 
IEDB web server (​h​t​t​p​​:​/​/​​t​o​o​l​​s​.​​i​e​d​​b​.​o​​r​g​/​c​​o​n​​s​e​r​v​a​n​c​y​/) 
was used for the analysis of the epitope conservancy pat-
tern with a threshold of 0.8 for sequence identity [38].

Design of MEV
The MEV was designed by fusing B-cell and T-cell epi-
topes. These epitopes were highly conserved within the 
same serotype and showed high antigenicity, non-allerge-
nicity, and non-toxicity. “KK”, “AAY” and “GPGPG” link-
ers were used to connect epitopes from B-cell, cytotoxic 
T-cell, and helper T-cells, respectively. Mycobacterium 
tuberculosis heparin-binding hemagglutinin (HBHA) 
was used as an adjuvant in the vaccine construct as it 
was proved to be an efficient TLR-4 agonist, enhancing 
immune activation. For proper separation and flexibility 
between the adjuvant and the multiepitope region, an 
“EAAAK” linker was used.

MEV construct, TLR-4, and TLR-2 structure modeling, 
refinement, and validation
The tertiary structure of MEV was predicted using the 
Robetta server (Robetta server, ​h​t​t​p​​s​:​/​​/​r​o​b​​e​t​​t​a​.​b​a​k​e​r​l​a​b​.​o​
r​g​/). The Robetta server is a protein prediction server, its 
core is the Rosetta macromolecular modeling suite [39]. 
The RoseTTAFold option, a deep learning-based method, 
was chosen for the prediction of the MEV tertiary struc-
ture. The web server generated multiple models for the 
tertiary structure of the MEV. The bovine TLR-4 protein 
sequence (accession number NP_776623) and TLR-2 
protein sequence (accession number ALL55248.1) were 
aligned against the SWISS-Model database [40] to build 
their tertiary structures using homology modeling. The 
web server ranked the model according to their highest 
accuracy scores.

The generated tertiary structures models were then 
refined and enhanced using GalaxyRefine (​h​t​t​p​​s​:​/​​/​g​a​l​​a​
x​​y​.​s​​e​o​k​​l​a​b​.​​o​r​​g​/​c​​g​i​-​​b​i​n​/​​s​u​​b​m​i​​t​.​c​​g​i​?​t​​y​p​​e​=​R​E​F​I​N​E) web 
server [41, 42]. The residual geometry of the refined vac-
cine construction was analyzed and improved followed 
by the prediction of construction stereochemical qual-
ity using the PROCHECK web tool from the SAVES v6.0 
server (https://saves.mbi.ucla.edu/) [43]. Data generated 
from the Ramachandran plot and ERRAT scores were 
used for the selection of the best tertiary model. The final 
structure of the selected model was tested for the pres-
ence of errors using the ProsA server (​h​t​t​p​​s​:​/​​/​p​r​o​​s​a​​.​s​e​​r​v​
i​​c​e​s​.​​c​a​​m​e​.​​s​b​g​​.​a​c​.​​a​t​​/​p​r​o​s​a​.​p​h​p) [44]. The final optimized 
protein structure was evaluated for its physicochemical 
properties using ProtParam, Expasy webserver (​h​t​t​p​​s​:​/​​/​w​
e​b​​.​e​​x​p​a​​s​y​.​​o​r​g​/​​p​r​​o​t​p​a​r​a​m​/).

Discontinuous B-cell epitope prediction
Discontinuous B-cell epitopes of MEV 3D structure were 
predicted using the Ellipro tool in the IEDB webserver (​
h​t​t​p​​:​/​/​​t​o​o​l​​s​.​​i​e​d​​b​.​o​​r​g​/​e​​l​l​​i​p​r​o​/). The Ellipro tool can ​p​r​e​d​i​
c​t both linear and discontinuous epitopes. It uses three 
main algorithms to predict the discontinuous epitopes. 
These algorithms work on identification of the epitopes 
by clustering protein residues based on certain values 
called Protrusion Index (PI), their spatial proximity, and 
giving them scores determined by the PI of their residues. 
The web tool was used with its default parameters with 
a minimum score of 0.5 and a maximum distance of 6 
angstroms.

Molecular docking of TLR-4 and TLR-2 with MEV
Protein-protein interaction between the MEV and both 
bovine TLR-4 and TLR-2 were predicted using Clust-
pro server (​h​t​t​p​​s​:​/​​/​c​l​u​​s​p​​r​o​.​​o​r​g​​/​l​o​g​​i​n​​.​p​h​​p​?​r​​e​d​i​r​​=​/​​m​o​d​​e​
l​s​​.​p​h​p​​?​j​​o​b​=​1​1​7​7​8​5​3) [45]. The structures with interac-
tion within the extracellular region of TLR-4 or TLR-2 
were selected for further analysis of the docked complex. 

http://crdd.osdd.net/raghava/abcpred/
http://www.ddg-pharmfac.net/vaxijen/
http://www.ddg-pharmfac.net/vaxijen/
http://www.ddg-pharmfac.net/AllerTop/
http://www.ddg-pharmfac.net/AllerTop/
http://crdd.osdd.net/raghava/toxinpred/
http://crdd.osdd.net/raghava/toxinpred/
http://tools.iedb.org/conservancy/
https://robetta.bakerlab.org/
https://robetta.bakerlab.org/
https://www.ncbi.nlm.nih.gov/protein/NP_776623.5
https://www.ncbi.nlm.nih.gov/protein/944203347
https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
https://saves.mbi.ucla.edu/
https://prosa.services.came.sbg.ac.at/prosa.php
https://prosa.services.came.sbg.ac.at/prosa.php
https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
http://tools.iedb.org/ellipro/
http://tools.iedb.org/ellipro/
https://cluspro.org/login.php?redir=/models.php?job=1177853
https://cluspro.org/login.php?redir=/models.php?job=1177853
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Binding affinities ( ∆ G) and Equilibrium dissociation 
constant (Kd) of selected models was determined using 
the PRODIGY webserver (​h​t​t​p​​s​:​/​​/​w​e​n​​m​r​​.​s​c​​i​e​n​​c​e​.​u​​u​.​​n​l​/​p​
r​o​d​i​g​y​/) [46]. The interacting atoms were identified and 
visualized using the PDBsum server (​h​t​t​p​​s​:​/​​/​w​w​w​​.​e​​b​i​.​​a​c​
.​​u​k​/​t​​h​o​​r​n​t​​o​n​s​​r​v​/​d​​a​t​​a​b​a​​s​e​s​​/​p​d​b​​s​u​​m​/​G​e​n​e​r​a​t​e​.​h​t​m​l) [47]. 
The final docked complexes were visualized using Dis-
covery Studio 2023 (​h​t​t​p​​s​:​/​​/​w​w​w​​.​3​​d​s​.​​c​o​m​​/​p​r​o​​d​u​​c​t​s​​/​b​i​​o​v​
i​a​​/​d​​i​s​c​o​v​e​r​y​-​s​t​u​d​i​o).

Molecular dynamic simulation and energy minimization
The topology parameters of the proteins were generated 
using GROMACS 2024.2 with AMBER99SB force field 
[48]. Each protein complex was solvated in a cubic box 
with SPC water model [49] and neutralized by adding Cl− 
counter ions. The neutralized systems underwent energy 
minimization using the steepest descent algorithm in 
50,000 steps or Fmax < 400  kJ/mol. Subsequently, the 
minimized systems were equilibrated in two steps: first, 
NVT ensemble where the temperature was controlled at 
300 K for 200 ps using the V-rescale thermostat, followed 
by NPT ensemble where the pressure was controlled by 
Parrinello-Rahman barostat algorithm for another 200 
ps. Finally, the MD simulations were performed for 100 
ns under NPT ensemble with time step of 2  fs. Long-
range electrostatic interactions were calculated using 
Particle Mesh Ewald (PME) algorithm [50]. Hydrogen 
bond lengths were constrained using Linear Constraint 
Solver (LINCS) algorithm [51]. The trajectories from the 
production run were treated for removing the periodic 
boundary conditions (PBC) and then used in the analysis.

Following the MD simulation, the root mean square 
deviations (RMSD) from initial equilibrated positions of 
C-α atoms of each chain of TLRs was investigated to test 
the stability of respective proteins. The fluctuations in the 
side chain atoms of residue of the tested TLR protein and 
were analysed as root mean square fluctuation (RMSF) 
of C-α atoms of each protein in systems. The compact-
ness of system and consequent stability was analysed in 
terms of radius of gyration (Rg) for each protein of the 
TLRs. The hydrogen bonds formed between vaccine 
chain and the TLR chains were analysed using appropri-
ate index files of respective chains. the trajectories were 
analysed using the GROMACS tools rms for RMSD, rmsf 
for RMSF, gyrate for RG, sasa for SASA and hbond to cal-
culate the number of hydrogen bonds.

The docked protein-vaccine complexes were imported 
into the HawkDock server V2 (​h​t​t​p​​:​/​/​​c​a​d​d​​.​z​​j​u​.​​e​d​u​​.​c​n​/​​
h​a​​w​k​d​o​c​k​/) for VD-MM/GBSA analysis [52]. The ​b​i​n​d​i​
n​g free energy of each complex was calculated, and key 
residues contributing to the interaction were identified 
through per-residue energy decomposition.

MEV codon optimization and in-silico cloning
Reverse translation and codon optimization were gener-
ated using the Reverse translate tool, sequence manipu-
lation suite (​h​t​t​p​​s​:​/​​/​w​w​w​​.​b​​i​o​i​​n​f​o​​r​m​a​t​​i​c​​s​.​o​​r​g​/​​s​m​s​2​​/​r​​e​v​_​t​r​
a​n​s​.​h​t​m​l), and codon optimization tool, VectorBuilder (​
h​t​t​p​​s​:​/​​/​e​n​.​​v​e​​c​t​o​​r​b​u​​i​l​d​e​​r​.​​c​o​m​​/​t​o​​o​l​/​c​​o​d​​o​n​-​​o​p​t​​i​m​i​z​​a​t​​i​o​n​.​h​t​
m​l), respectively. The generated cDNA sequence was ​o​p​t​
i​m​i​z​e​d for expression in the E. coli K-12 strain. The DNA 
sequence was inserted into the pET-30a (+) vector using 
the SnapGene tool.

Results
Strains selection and epitope prediction
Protein sequences representing Egyptian circulat-
ing FMDV strains for O, A, and SAT2 serotypes were 
retrieved from the NCBI protein database. Whole 
genomes or full P1 sequences for all strains were 
obtained and in case, the full-length sequences were not 
found for a certain strain, the full sequence of the near-
est strain was retrieved. For instance, the ETH/9/2019 
genomic sequence was used as the nearest replacement 
for the circulated Egyptian East Africa 3 (EA-3) strain. 
Those sequences were later prepared and subjected to 
epitope prediction.

Predicted epitopes that showed high binding affinity 
to B- and T-cell alleles were considered for the vaccine 
design. epitope conservancy analysis that showed high 
conservancy within its serotype (> 80%) with high antige-
nicity were selected. (Fig. 2).

CTL predicted epitopes
T-cell epitopes were included in preventive vaccines to 
naturally mimic the immune response triggered by infec-
tion. T-cell epitopes help in the induction of durable 
cellular-mediated immunity. Epitopes with the highest 
binding scores and the lowest percentile rank (< 0.05) 
against 103 BoLA were selected as strong binders 
(Table  2). More than 62 epitopes were higher than 0.85 
binding score, and lower than 0.05 in percentile rank. 
After antigenic and allergenic filtration, fifteen different 
alleles showed high binding affinity toward 16 different 
epitopes in all tested serotypes. Epitope starts at posi-
tion 402 of P1 has been predicted in the three serotypes 
and has a binding affinity toward four different MHC-I 
alleles (BoLA-1:02301, BoLA-6:01301, BoLA-D18.4, and 
BoLA-HD6). Although the position of the epitope was 
conserved in all the serotypes, its amino acid sequence 
was different, particularly in the SAT2 serotype. On the 
other hand, epitope “DVAEACPTL” was predicted to 
have a high affinity toward MHC-I from SAT2 VP3 pro-
tein. Although it was only predicted within the VP3 pro-
tein sequence, the conservancy analysis of this epitope 
showed to be conserved in the three serotypes.

https://wenmr.science.uu.nl/prodigy/
https://wenmr.science.uu.nl/prodigy/
https://www.ebi.ac.uk/thorntonsrv/databases/pdbsum/Generate.html
https://www.ebi.ac.uk/thorntonsrv/databases/pdbsum/Generate.html
https://www.3ds.com/products/biovia/discovery-studio
https://www.3ds.com/products/biovia/discovery-studio
http://cadd.zju.edu.cn/hawkdock/
http://cadd.zju.edu.cn/hawkdock/
https://www.bioinformatics.org/sms2/rev_trans.html
https://www.bioinformatics.org/sms2/rev_trans.html
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HTL predicted epitopes
HTL epitopes are essential for the generation of both 
humoral and cell-mediated immunity. These epitopes 
induce CD4 + responses that help in the formation of 
CD8 + T-cell memory and activation of antibody produc-
tion by B-cells [53, 54]. We selected epitopes with the 
highest prediction score, the lowest percentile rank, and 
a binding affinity of less than 50 nM. The final selected 
epitopes were found to be mostly in VP1 protein (11 epi-
topes) and only three epitopes were found in VP2 pro-
tein (Table  3). Serotype A and SAT-2 showed epitopes 
within the same location of VP2 with different amino 
acid sequences, these epitopes had an affinity toward the 
same MHC-II alleles. Interestingly, the epitope sequences 
from the A serotype showed conservancy in O serotype 
isolates.

B-cell predicted epitopes
B-cell epitopes were predicted using the ABCpred server 
where the algorithm sorts the predicted peptides accord-
ing to their score in different ranks. Epitopes were filtered 
by selecting highly antigenic and non-toxic epitopes. 
Moreover, B-cell epitopes were tested for the presence 
of signal peptides. After filtration, only four epitopes 
showed promising B-cell epitopes from VP3 and VP2 
proteins (Table 4). One peptide from SAT2 VP3 protein 
showed conservancy with the three serotypes.

MEV structure modeling, refinement, and validation
Vaccine construction involved 17 MHC-I epitopes, 11 
MHC-II epitopes, and four B-cell epitopes. Those epit-
opes have been separated by AAY, GPGPG, and KK link-
ers, respectively. After the inclusion of HBHA adjuvant 
separated from B-cell epitopes with EAAAK linker and 
6X his-tag, the final multiepitope protein length was 704 

Fig. 2  Conservancy and antigenicity analysis for the predicted surface antigen epitopes for (1) BCL, (2) CTL and (3) HTL
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seq_num Start Allele Peptide Score Percentile_rank AllerTop Toxinpred Vaxi-
gen 
SQ

Cons-O Cons-A Cons-
SAT2

A VP1 BoLA-3:01101 KSLGPTHVI 0.90301 0.01 NON-AL-
LERGEN

Non-Toxin 0.7081 0.00% 1.03% 0.00%

BoLA-2:00801 VVKHQGN-
LTW

0.85837 0.02 NON-AL-
LERGEN

Non-Toxin 0.9652 99.08% 94.33% 0.00%

BoLA-2:01201 TSNPTAYHK 0.88209 0.03 NON-AL-
LERGEN

Non-Toxin 0.652 94.47% 82.47% 0.00%

BoLA-T2a 0.88209 0.03 NON-AL-
LERGEN

Non-Toxin 0.652 94.47% 82.47% 0.00%

BoLA-1:02301 AQLPASFNY 0.86820 0.02 NON-AL-
LERGEN

Non-Toxin 0.769 0.00% 56.19% 0.00%

BoLA-D18.4 0.86820 0.02 NON-AL-
LERGEN

Non-Toxin 0.769 0.00% 56.19% 0.00%

VP2 BoLA-1:02301 YKNHKPWTL 0.86592 0.02 NON-AL-
LERGEN

Non-Toxin 0.9194 98.62% 99.48% 0.00%

BoLA-D18.4 0.86592 0.02 NON-AL-
LERGEN

Non-Toxin 0.9194 98.62% 99.48% 0.00%

BoLA-2:01201 SSIGASQIK 0.86034 0.05 NON-AL-
LERGEN

Non-Toxin 1.3363 0.00% 33.51% 0.00%

BoLA-T2a 0.86034 0.05 NON-AL-
LERGEN

Non-Toxin 1.3363 0.00% 33.51% 0.00%

VP3 BoLA-1:02301 AQYSGTINL 0.94326 0.01 NON-AL-
LERGEN

Non-Toxin 0.5566 100.00% 100.00% 0.00%

BoLA-6:01301 0.96461 0.02 NON-AL-
LERGEN

Non-Toxin 0.5566 100.00% 100.00% 0.00%

BoLA-D18.4 0.94326 0.01 NON-AL-
LERGEN

Non-Toxin 0.5566 100.00% 100.00% 0.00%

BoLA-HD6 0.96461 0.02 NON-AL-
LERGEN

Non-Toxin 0.5566 100.00% 100.00% 0.00%

BoLA-1:02301 TQYSGTINL 0.91057 0.02 NON-AL-
LERGEN

Non-Toxin 0.4008 100.00% 97.42% 0.00%

BoLA-6:01301 0.89276 0.05 NON-AL-
LERGEN

Non-Toxin 0.4008 100.00% 97.42% 0.00%

BoLA-D18.4 0.91057 0.02 NON-AL-
LERGEN

Non-Toxin 0.4008 100.00% 97.42% 0.00%

BoLA-HD6 0.89276 0.05 NON-AL-
LERGEN

Non-Toxin 0.4008 100.00% 97.42% 0.00%

BoLA-T2c 0.91577 0.05 NON-AL-
LERGEN

Non-Toxin 0.4008 100.00% 97.42% 0.00%

Table 2  List of CTL (MHC-I) predicted peptides including conservancy and antigenicity score
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amino acids. The molecular weight of MEV was 75.49 
KDa, theoretical PI 9.4, and the extension coefficient at 
280 nm in water was 95,370 M− 1 cm− 1. The protein was 
predicted to be stable with an instability index of 27.5. 
The aliphatic index was 82.12 and the grand average of 
hydropathicity (GRAVY) was − 0.292, indicating that the 
protein is hydrophilic and soluble in water.

The tertiary structure of the protein was generated 
using the Robetta server. The generated models were 
further refined using the GalaxyRefine webserver. The 
validation scores of both original and refined models 

were used for the best model selection. The final selected 
model had an ERRAT score of 92.7, and its Ramachan-
dran plot showed 92.9% residues within most favored 
regions, 6.1% residues in allowed regions, 0.2% residues 
in generously allowed regions, and 0.8% residues in dis-
allowed regions. The final selected model Vaxigen score 
was 0.527, proving that the MEV is antigenic. The MEV 
was non-allergenic, non-toxic, and had no signal peptide 
nor transmembrane helices, so no specific protein local-
ization nor difficulties could be faced during protein pro-
duction (Fig. 3).

seq_num Start Allele Peptide Score Percentile_rank AllerTop Toxinpred Vaxi-
gen 
SQ

Cons-O Cons-A Cons-
SAT2

O VP1 BoLA-6:01402 GESADPVTA 0.86797 0.04 NON-AL-
LERGEN

Non-Toxin 0.5132 100.00% 100.00% 0.00%

BoLA-2:00801 AVKHEGN-
LTW

0.93548 0.01 NON-AL-
LERGEN

Non-Toxin 1.1427 100.00% 50.52% 0.00%

BoLA-1:02301 IKATRVTEL 0.85480 0.03 NON-AL-
LERGEN

Non-Toxin 1.3971 99.54% 0.00% 0.00%

BoLA-D18.4 0.85480 0.03 NON-AL-
LERGEN

Non-Toxin 1.3971 99.54% 0.00% 0.00%

VP2 BoLA-6:01301 SIQKRELYQL 0.95782 0.02 NON-AL-
LERGEN

Non-Toxin 0.5893 100.00% 0.00% 0.00%

BoLA-HD6 0.95782 0.02 NON-AL-
LERGEN

Non-Toxin 0.5893 100.00% 0.00% 0.00%

BoLA-6:01301 IQKRELYQLTL 0.94439 0.03 NON-AL-
LERGEN

Non-Toxin 0.6233 100.00% 0.00% 0.00%

BoLA-HD6 0.94439 0.03 NON-AL-
LERGEN

Non-Toxin 0.6233 100.00% 0.00% 0.00%

VP3 BoLA-1:02301 TQYSGTINL 0.91057 0.02 NON-AL-
LERGEN

Non-Toxin 0.4008 100.00% 97.42% 0.00%

BoLA-6:01301 0.89276 0.05 NON-AL-
LERGEN

Non-Toxin 0.4008 100.00% 97.42% 0.00%

BoLA-D18.4 0.91057 0.02 NON-AL-
LERGEN

Non-Toxin 0.4008 100.00% 97.42% 0.00%

BoLA-HD6 0.89276 0.05 NON-AL-
LERGEN

Non-Toxin 0.4008 100.00% 97.42% 0.00%

BoLA-T2c 0.91577 0.05 NON-AL-
LERGEN

Non-Toxin 0.4008 100.00% 97.42% 0.00%

SAT2 VP1 BoLA-2:01801 IPFTAPHRL 0.94194 0.01 NON-AL-
LERGEN

Non-Toxin 0.7639 0.00% 0.00% 56.44%

BoLA-2:01802 0.94194 0.01 NON-AL-
LERGEN

Non-Toxin 0.7639 0.00% 0.00% 56.44%

VP3 BoLA-T2c DVAEACPTL 0.93081 0.04 NON-AL-
LERGEN

Non-Toxin 0.6750 100.00% 100.00% 93.07%

BoLA-1:00902 TQYSGSLNY 0.92714 0.01 NON-AL-
LERGEN

Non-Toxin 0.4857 0.00% 0.00% 96.53%

BoLA-1:02301 0.94839 0.01 NON-AL-
LERGEN

Non-Toxin 0.4857 0.00% 0.00% 96.53%

BoLA-2:06201 0.87324 0.01 NON-AL-
LERGEN

Non-Toxin 0.4857 0.00% 0.00% 96.53%

BoLA-D18.4 0.94839 0.01 NON-AL-
LERGEN

Non-Toxin 0.4857 0.00% 0.00% 96.53%

BoLA-T5 0.92714 0.01 NON-AL-
LERGEN

Non-Toxin 0.4857 0.00% 0.00% 96.53%

Table 2  (continued) 
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Discontinuous B-cell epitopes prediction
A total of 359 residues were predicted to be involved in 
discontinuous B-cell epitopes. The length of predicted 
epitopes ranged from 9 to 147 residues with 37 resi-
dues having the highest binding score of 0.972 (Table 5) 
(Fig. 4). HBHA domain showed the highest epitope score 
and lowest epitope score located within MHCI epitopes.

TLR-4 and TLR-2 structural prediction
Bovine TLR-4 and TLR-2 sequences were used to pre-
dict their tertiary structure using homology modeling by 

SWISS-Model from the Expasy webserver. SWISS-Model 
generated different tertiary structures based on sequence 
alignment with PDB and AlphaFold database. TLR-4 ter-
tiary structure showed 84% similarity with the TLR-4 
Neophocaena asiaeorientalis model from the AlphaFold 
database. TLR-2 highest model showed 95% similarity 
with Capra ibex TLR-2. Selected models were refined 
using GalaxyRefine and RMSD values were 0.338 and 
0.3 for TLR-4 and TLR-2, respectively. Ramachandran 
plot and quality score were generated using ERRAT and 
PROCHECK from the SAVES V6.0 website. The overall 

Table 4  BCL-predicted epitopes for FMDV serotypes including conservancy and antigenicity scores
Serotype Protein Peptide Score Allertop Toxipred Vaxigen SQ Cons-O Cons-A Cons-SAT2 signalP
A VP3 GWVCVYQITHGKAEND 0.9 NON-ALLERGEN Non-toxin 0.6100 2.55% 100.00% 0.00% OTHER
O VP3 AGLAQYYTQYSGTINL 0.88 NON-ALLERGEN Non-toxin 0.4885 100.00% 99.35% 0.97% OTHER
SAT2 VP2 LCSLKAREEFQLTLYP 0.87 NON-ALLERGEN Non-toxin 1.4923 0.00% 0.00% 97.09% OTHER
SAT2 VP3 DGYGGFQNTDPKTADP 0.87 NON-ALLERGEN Non-toxin 1.0055 100.00% 99.35% 100.00% OTHER

Fig. 3  Modeled and refined structure of MEV. (A) amino acid sequence of MEV. (B) the tertiary structure of MEV. (C) Ramachandran plot analysis of pre-
dicted MEV structure
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quality factor for TLR-4 and TLR-2 were 88.3 and 91.6, 
respectively. TLR-4 Ramachandran plot showed that the 
refined model is reliable with 89.4% atoms in the favored 
regions, 10.1% in the allowed regions, and 0.4% in disal-
lowed regions. TLR-2 had 90.3% of the molecular atoms 
in the favored regions, 9.5% in the allowed regions, and 
0.1% in the disallowed regions.

Molecular docking analysis
The docking analysis was performed using the ClusPro 
web server for interaction between TLR-4 or TLR-2 and 
MEV. ClusPro generated 30 models for each interaction, 
each model was visualized and assessed based on type, 
location, and number of interacting atoms between the 
TLRs and MEV. Models that attain a high number of 
bonds between MEV and extracellular domains of TLRs 
were selected for further evaluation. Molecular dock-
ing analysis of the selected MEV and TLR-4 predicted 
the formation of 62 bonds with 10 salt bridges and 26 
hydrogen bonds (Fig. 5). TLR-2 molecular docking analy-
sis revealed the formation of 60 bonds that contained 6 
salt bridges and 23 hydrogen bonds (Fig. 6). The selected 
docked models were further evaluated based on their 
binding affinity ( ∆ G) and dissociation factor (Kd). The 
final selected models for MEV-TLR-4 ∆ G value − 22 
and Kd 2.8e-16, MEV-TLR-2 model ∆ G was − 17.8 and 

Kd 3e-13. These values indicated that selected models are 
energetically viable.

Molecular dynamic simulation
RMSD analysis of TLR-2 and TLR-4 protein-vac-
cine complexes revealed distinct patterns of struc-
tural stability throughout the simulation. Initially, 
TLR-4 exhibited higher RMSD than TLR-2 up to 5.5 
ns (0.9110 ± 0.3025  nm vs. 0.7330 ± 0.2265  nm, respec-
tively). However, beyond 5.5 ns, the trend reversed, with 
TLR2 showing higher RMSD. Both systems converged 
at approximately 40 ns, with TLR-4 displaying a lower 
RMSD compared to TLR-2 during the final phase of the 
simulation (40–100 ns), indicating enhanced structural 
stability (Fig. 7A).

RMSF analysis showed TLR-2 showed a slightly higher 
flexibility (0.99 ± 0.4) than TLR-4 (0.93±. 0.54). At the 
N-terminus, TLR-2 showed significantly greater flexibil-
ity (1.53 ± 0.14), while of TLR-4 exhibited pronounced 
fluctuations in the C-terminus (3.06 ± 0.23) (Fig.  7B). 
TLR-2 exhibited a lower RG (3.97 ± 0.56) than TLR-4 
(4.47 ± 0.58), indicating a more compact structure for 
TLR-2. During the initial phase (up to 10 ns), both pro-
teins showed higher RG values as they equilibrated, 
with TLR-2 and TLR-4 having RGs of 5.478 ± 0.28 and 
5.408 ± 0.215, respectively. After 40 ns, the RG values 

Table 5  Discontinuous B-cell epitope prediction results showing involved residues within each epitope with its score
No. Residues Number of 

residues
Score

1 A: M2, A: A3, A: E4, A: N5, A: P6, A: N7, A: I8, A: D9, A: D10, A: L11, A: P12, A: A13, A: P14, A: L15, A: L16, A: A17, A: A18, A: L19, 
A: G20, A: A21, A: A22, A: D23, A: L24, A: A25, A: L26, A: A27, A: T28, A: V29, A: N30, A: D31, A: L32, A: I33, A: A34, A: N35, A: 
L36, A: E38, A: R39

37 0.972

2 A: R37, A: A40, A: E41, A: E42, A: T43, A: R44, A: A45, A: E46, A: T47, A: R48, A: T49, A: R50, A: V51, A: E52, A: E53, A: R54, A: R55, 
A: A56, A: R57, A: L58, A: T59, A: K60, A: F61, A: Q62, A: E63, A: D64, A: L65, A: P66, A: E67, A: Q68, A: F69, A: I70, A: E71, A: L72, 
A: R73, A: D74, A: K75, A: F76, A: T77, A: T78, A: E79, A: E80, A: L81, A: R82, A: K83, A: A84, A: A85, A: E86, A: G87, A: Y88, A: L89, 
A: E90, A: A91, A: A92, A: T93, A: N94, A: R95, A: Y96, A: N97, A: L133, A: T134, A: Q135, A: E136, A: A137, A: L138, A: G139, A: 
T140, A: V141, A: A142, A: S143, A: Q144, A: T145, A: R146, A: A147, A: V148, A: G149, A: E150, A: R151, A: A152, A: A153, A: 
K154, A: L155, A: V156, A: G157, A: I158, A: E159, A: L160, A: P161, A: G162, A: K163, A: A164, A: E165, A: A166, A: A167, A: 
G168, A: K169, A: K170, A: A171, A: Q172, A: K173, A: A174, A: I175, A: A176, A: K177, A: A178, A: P179, A: A180, A: K181, A: 
K182, A: S184

110 0.783

3 A: P542, A: T555, A: G559, A: P560, A: G561, A: P562, A: G563, A: E565, A: L566, A: L567, A: V568, A: R569, A: M570, A: K571, 
A: R572, A: A573, A: E574, A: L575, A: Y576, A: C577, A: P578, A: G579, A: P580, A: G581, A: P582, A: G583, A: N584, A: I585, A: 
H586, A: E587, A: L588, A: L589, A: V590, A: R591, A: M592, A: K593, A: R594, A: A595, A: E596, A: L597, A: Y598, A: G599, A: 
P600, A: G601, A: P602, A: G603, A: R604, A: F605, A: V606, A: K607, A: I608, A: S609, A: S610, A: L611, A: S612, A: P613, A: T614, 
A: H615, A: V616, A: I617, A: D618, A: G619, A: P620, A: G621, A: P622, A: G623, A: T624, A: I625, A: H626, A: E627, A: L628, 
A: L629, A: V630, A: R631, A: M632, A: K633, A: R634, A: A635, A: E636, A: L637, A: Y638, A: G639, A: P640, A: G641, A: P642, 
A: G643, A: W644, A: S645, A: L646, A: V647, A: V648, A: M649, A: V650, A: L651, A: T652, A: P653, A: L654, A: T655, A: T656, 
A: E657, A: A658, A: G659, A: P660, A: G661, A: P662, A: G663, A: W664, A: T665, A: L666, A: V667, A: V668, A: M669, A: V670, 
A: V671, A: S672, A: P673, A: L674, A: T675, A: T676, A: S677, A: S678, A: G679, A: P680, A: G681, A: P682, A: G683, A: W684, 
A: T685, A: L686, A: V687, A: V688, A: M689, A: V690, A: V691, A: S692, A: P693, A: L694, A: T695, A: V696, A: S697, A: T698, A: 
H699, A: H700, A: H701, A: H702, A: H703, A: H704

147 0.688

4 A: A407, A: Y408, A: S409, A: S410, A: I411, A: G412, A: A413, A: S414, A: Q415, A: I416, A: K417, A: A418, A: A419, A: Y420, A: 
T421, A: Q422, A: Y423, A: S424, A: G425, A: S426, A: L427, A: N428, A: Y429, A: A430, A: A431, A: Y432, A: T433, A: Q434, A: 
Y435, A: S436, A: T438, A: N447, A: T449, A: H452, A: K453, A: A454, A: A455, A: Y456, A: V457, A: V458, A: K459, A: H460, A: 
Q461, A: G462, A: N463, A: L464

46 0.666

5 A: A307, A: A309, A: V310, A: K311, A: H312, A: E313, A: G314, A: N315, A: L316 9 0.568
6 A: E353, A: A355, A: A356, A: Y357, A: I358, A: P359, A: F360, A: T361, A: P363, A: H364 10 0.54
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Fig. 5  Molecular docking analysis of MEV and Bovine TLR-4. (A) The docked complex of bovine TLR-4 and MEV. (B) interacting amino acids between TLR-4 
(Chain A) and MEV (Chain B). (C) analysis of formed bonds between docked complexes. (D) Key for interactions between docked molecules

 

Fig. 4  Discontinuous B-cell epitope prediction. Results showing epitope 1 to epitope 6 (A–F). The protein backbone is represented in blue and the 
yellow-highlighted residues represent the predicted discontinuous B-cell epitopes
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stabilized, reflecting equilibrium conformations; TLR-2 
maintained a more compact structure (3.678 ± 0.121), 
while TLR-4 stabilized at a higher RG (4.046 ± 0.089), 
with a more expanded conformation (Fig.  7C). SASA 
analysis showed TLR-4 had a consistently higher 
exposed surface area (434.43 ± 13.97) compared to TLR-2 
(415.86 ± 8.03), aligned with the RG trends (Fig. 7D).

Hydrogen bonds analysis reveals distinct interaction 
profiles that highlight differences in binding strength and 
stability. On average, the interaction between TLR-4 and 
the vaccine formed a significantly higher number of H 
bonds (29.64 ± 9.00) compared to TLR-2 and the vaccine 
(15.01 ± 3.50). The larger but variable H bond number in 
the TLR4-vaccine interaction suggests a more dynamic 
and robust binding interface (Fig. 7E).

The MMGBSA analysis provided insights into the 
binding energetics of the MEV vaccine construct with 
TLR-2 and TLR-4. The TLR4-MEV complex exhibited 
a stronger total binding energy of -226.51  kcal/mol, 
mostly due the favorable van der Waals (-304.67  kcal/
mol) and electrostatic (-425.19  kcal/mol) interactions, 
partially encountered by an unfavorable polar solvation 
energy (543.15 kcal/mol) and a stabilizing nonpolar sol-
vation energy (-39.8  kcal/mol). In contrast, the TLR2-
MEV complex demonstrated a weaker total binding 
energy of -177.09 kcal/mol, with a lower van der Waals 
(-238.44 kcal/mol) and electrostatic (-234.54 kcal/mol) 
interactions contributing significantly, and a lesser desol-
vation penalty (326.77 kcal/mol).

In-silico molecular cloning
The protein sequence of MEV was reverse-translated to 
its respective DNA sequence using the Reverse translate 
tool, sequence manipulation suit. The codon optimiza-
tion index was 0.91 and the GC percentage was 59.94%, 
indicating a good abundance of commonly used codons. 
(Fig. 8) shows the optimized DNA sequence ligated with 
the pET-30a (+) vector using EcoRI and HindIII restric-
tion digestion.

Discussion
Vaccination remains one of the most essential measures 
for the prevention and control of FMD. Traditional viral-
based vaccines have great immunogenicity, but there are 
several drawbacks, including high manufacturing costs 
linked to the need for a dedicated manufacturing facil-
ity, along with the possibility of insufficient inactivation 
or viral leakage [55, 56]. Recombinant DNA technology 
provides a solution for those problems with a chance 
of producing a vaccine that attains long-lasting immu-
nity. Recent publications indicated the success of using 
recombinant epitopes from different FMDV structural 
proteins to provide better viral immunity and fewer haz-
ardous production process [57–59].

Immunoinformatics and computational biology have 
raised the bar in the vaccine production industry through 
enabling a safer and more innovative way to design viral 
vaccines [60, 61]. The huge amount of available biological 
data can be used to identify promising epitopes and help 

Fig. 6  Molecular docking analysis of MEV and Bovine TLR-2. (A) The docked complex of bovine TLR-2 and MEV. (B) interacting amino acids between TLR-2 
(Chain A) and MEV (Chain B). (C) analysis of formed bonds between docked complexes. (D) Key for interactions between docked molecules
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suggest vaccine candidates to be validated in wet lab [62]. 
Therefore, the current study aimed to develop MEV with 
high immunogenicity against FMDV. During this work, 
we identified the potential dominant B-cell and T-cell 
epitopes from different circulating Egyptian serotypes 

to help design an efficient FMDV vaccine. The suggested 
vaccine is predicted to provide immunity against differ-
ent FMDV lineages and serotypes based on the inclusion 
of conserved and immunogenic epitopes. Addition-
ally, the designed vaccine is computationally predicted 

Fig. 7  Molecular dynamic simulations graph representation of the performance of MEV construct with TLR-4/TLR-2 complexes. (A) RMSD plot of MEV-
receptor complexes showing their stability within the 40 ns of the simulation. (B) RMSF plot shows good flexibility of construct with high fluctuation 
within the c-terminus of both receptors. (C) The RG plot indicates the compactness of the receptors as we progress in the simulation. (D) SASA plot shows 
higher solvent exposure of TLR-4 protein complex than TLR-2. (E) Hydrogen bond analysis plot showing higher number of hydrogen bond formation 
between MEV and TLR-4 compared to MEV and TLR-2
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to activate both humoral and cell-mediated immunity, 
though experimental validation is required to confirm 
the efficacy of these findings.

During this study, we showed the significance of 
employing immunoinformatics for FMDV vaccine devel-
opment. Previous studies such as those by Ahmed et al. 
2022 [63] and Bhutta et al. 2024 [64] utilized immuno-
informatics for vaccine design focused on specific sero-
types or polyprotein regions. For instance, these studies 
have focused only on developing FMDV vaccine against 
serotype O. In contrast, our study includes epitopes from 
multiple serotypes increasing the vaccine’s capability to 
provide cross-serotype immunity. Like Bhutta, we have 
specifically predicted epitopes for FMDV against BoLA. 
However, Bhutta has studied the interaction of multiepi-
tope vaccine with specific BoLA using molecular dock-
ing. our work focused on studying the interaction of 
developed vaccines with different cellular receptors such 
as TLR-4 and TLR-2. We also focused on the use of vari-
able structural proteins of virus capsid when other stud-
ies such as Ahmed et al. used the full polyprotein for 
prediction of vaccine epitopes. Using structural proteins 
ensures the inclusion of FMDV antigenic sites.

Several antigenic sites have been identified in highly 
variable structural proteins and have been divided into 
five main antigenic sites. Sites 1, 3, and 5 are βG-βH loop 
and carboxy terminus, residues 566 and 567 located in 

the βΒ-βC loop, and residue 672 of VP1, respectively. 
Antigenic site 2 is composed of residues at positions 
155–158, 160,162, and 216 of VP2, whereas residues at 
positions 164 and 219 are responsible for interaction with 
monoclonal antibodies. Residues 359 and 361 of VP3 
were found to be crucial for antigenic site 4 [17]. Even, 
VP1 is considered a highly variable protein, it contains 
conserved regions throughout different serotypes. These 
regions are crucial for cellular integration and interac-
tion, such as G-H loop containing the “Arg-Gly-Asp, or 
RGD” motif [12, 65], or capsid processing such as the 
YCPRP sequence [66].

During this work, we predicted the linear B cell epit-
opes in FMDV structural proteins (VP1-3). Peptides from 
the VP3 protein were selected for all tested serotypes. 
Selected VP3 epitopes have not been experimentally dis-
covered or identified in previous studies. VP3-131 and 
132 [67] residues were predicted to have a significant 
antigenic property. Those residues were found within 
predicted B-cell epitopes with high rank and binding 
affinity toward B-cell receptors. However, those epitopes 
were tested non-antigenic by the Vaxigen webserver. A 
single peptide was selected from SAT2 VP2 protein that 
have commonly known antigenic residue in position 133 
[68].

Helper T cell epitopes were identified in multiple 
FMDV proteins, with abundance in conserved sequences 

Fig. 8  Illustration of vaccine DNA sequence cloning in pET30a(+) vector. (A) shows the insertion of DNA sequence in pET30 vector using EcoRI and HindIII 
restriction enzyme. (B) shows the final recombinant plasmid containing MEV sequence in green arrow
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of VP4 and non-structural proteins [68]. A specific epi-
tope in the VP4 protein was identified to have binding 
affinity to four different BoLA alleles [69, 70]. Being a 
very conserved protein among structural proteins, VP4 
was beyond the scope of this study, as we were looking 
to enhance the FMDV vaccine with different epitopes 
with higher antigenicity and conservancy within FMDV 
isolates. A recent study was able to generate memory 
HTL from FMDV variable structure proteins [71]. Epit-
opes presented by the study were predicted in the pres-
ent work, yet their binding affinity and percentile rank 
were lower than our selection threshold. Two epitopes, 
VP1(560–575) and VP1(561–576) were predicted with 
the required antigenicity and allergenicity from serotype 
A. Those epitope ranges were following experimentally 
identified epitopes [73]. HTL epitopes were also identi-
fied in non-structural proteins [72, 73], however, the 
inclusion of these epitopes into the predicted vaccine 
would decrease the efficiency of differentiating infected 
from vaccinated animals (DIVA).

For cytotoxic T-cell epitopes, fewer reports were able 
to identify FMDV peptides for bovine and swine MHC-1. 
In a study focused on identifying swine MHC-1 epitopes, 
authors identified high binding affinity between swine 
leukocyte antigen-2 and epitopes from VP1 protein [74]. 
Herein, we identified a similar position with high con-
servancy and antigenicity in the VP1 region (602–611) 
that has a binding affinity toward BoLA-2:00801. BoLA-
2:00801 was also identified as the second most frequent 
MHC-1 allele in Holsten cattle [75]. Other epitopes were 
predicted in VP2 and VP3 proteins that have a bind-
ing affinity toward MHC-I. Such epitopes as VP3 (402–
410), VP2 (256–264), and VP2 (275–283) epitopes were 
reported to induce T-cell proliferation [67]. The presence 
of different epitopes that can activate cytotoxic response 
indicates the need for further investigation of different 
structural protein (VP1-VP3) peptides in wet lab.

This study has faced two major limitations in predict-
ing and selecting effective epitopes for FMDV. First, 
there are limited prediction tools that align the protein 
of interest against commonly identified BoLA alleles [76]. 
Second, since FMDV presents a high genomic variation 
between its serotypes and even within each serotype, 
this variation affects epitope selection. This variation 
decreased the chance of selecting common epitopes for 
FMDV serotypes. It is important to notice using different 
FMDV proteins, strains, serotypes, or updated versions 
of the same or another web tool may yield different epi-
tope predictions.

HBHA was used as an adjuvant, and has been tested 
experimentally with MEV against FMDV. HBHA has 
been identified as a TLR-4 agonist with no toxicity, strong 
immunogenicity, and the ability to induce dendritic cell 

maturation [77]. HBHA would increase the chance of 
MEV induction of cell-mediated immunity.

Adjuvant and predicted epitopes are connected 
through different types of linkers. EAAAK linker forms 
a rigid α-helix that provides a fixed distance between 
different domains, hence providing good separation 
between them [78, 79]. EAAAK linker was used to link 
adjuvant and B-cell epitopes. KK linker is one of the tar-
get sequences for lysosomal protease cathepsin B that 
works on the antigen presentation process [80]. Besides, 
the KK linker increases the immunogenicity of the MEV 
[81]. Likewise, AAY linker can effectively separate cyto-
toxic T-cell epitopes, as it targets different mammalian 
proteasomes [82]. GPGPG linkers could induce helper T 
lymphocytes, a critical characteristic for MEV [81, 83]. 
The presence of protein linkers is important to prevent 
and reduce the chance of junctional immunogenicity, 
ensures flexible structures and low rigidity [84–86]. The 
final construct contained a 6x His tag to facilitate the 
purification of the final protein.

Constructed vaccine physicochemical properties were 
evaluated using the ProtParam server [87]. The vac-
cine’s basic nature predicted by its theoretical pI and its 
low GRAVY score indicates the solubility of the vaccine 
within the physiological environment. Previous studies 
such as Foroutan et al. [88] and Azami et al. [89] have 
used the same tools for in-silico assessment of their 
designed vaccine that have proved to induce a cellular 
and humoral response in mice through laboratory vali-
dation. The physicochemical properties predicted for the 
FMDV vaccine in our study were comparable with these 
previous studies. However, our predicted vaccines have a 
higher aliphatic index ensuring more thermal stability of 
the protein. The high pI of the FMDV ensures the pres-
ence of positively charged residues capable of interacting 
with negatively charged cellular receptors [90]. Toll-like 
receptors are recognition molecules that can be found on 
different cell surfaces of many cell types. Toll-like recep-
tors contain a leucine-rich repeat domain as an extracel-
lular domain and an intracellular toll/IL-1 receptor-like 
(TIR) domain. FMDV was reported to interact with dif-
ferent Toll-like receptors [25, 91]. For instance, TLR-3,7 
and 8 were reported to interact with FMDV endosomal 
RNA [92, 93], on the other hand, viral VP1 and VP3 pro-
teins interact with TLR-2 and TLR-4, respectively. The 
interaction between FMDV and TLR-2 induces IL-6 pro-
duction, while the interaction of VP3 and TLR-4 activates 
the immune response toward FMDV [94, 95]. In this 
study, we analyzed the interaction between the designed 
MEV and TLR-4 and TLR-2 using molecular docking 
analysis. The molecular docking with TLR-4 showed 
many interactions between the extracellular domain of 
TLR-4 and MHCII and part of MHCI epitopes. In the 
same manner, TLR-2 showed interaction with MHCI and 
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MHCII epitopes. The analysis of dissociation and bind-
ing affinity energies exhibited a highly stable structure 
between the MEV and TLRs.

Molecular dynamic simulation revealed a distinct 
pattern of structural stability and flexibility of binding 
between the MEV construct and TLR-2/TLR-4. TLR-4 
RMSD analysis showed greater stability of its com-
plex with MEV compared to TLR-2, specifically during 
final phase of the simulation. RG and SASA proved that 
TLR-4 adopts more open and exposed conformation 
during interaction with the vaccine, while TLR-2 main-
tains a more compact structure. Furthermore, hydrogen 
bond and MMGBSA analysis demonstrated that TLR-
4-vaccine complex forms stronger and more interactions 
with high binding affinity (-226.51 kcal/mol) compared to 
TLR-2 (-177.09 kcal/mol). These results suggest that the 
MEV construct would have stronger and more dynamic 
interaction with TLR-4. This finding supports its poten-
tial role in activating TLR-4-mediated immunity.

The use of immunoinformatics and in-silico design 
is an important step in evaluating and predicting a new 
candidate vaccine, especially for highly heterogenic 
viruses such as FMDV. Including in-silico evaluation of 
vaccine candidates is essential to avoid time and finan-
cial-consuming in wet lab experimentations. Herein, we 
proposed a possible pipeline for designing the FMDV 
multiepitope vaccine. The multiepitope vaccine con-
tained B-cell and T-cell epitopes that can induce immune 
system reaction in both its format, cell-mediated and 
humoral immunity. This approach has been applied in 
the design of vaccines against different pathogens such 
as SARS-CoV-2 [54], lumpy skin virus [25], avian leukosis 
virus [96], human papillomavirus [97] and Acinetobacter 
baumannii [98].

Conclusion
The application of vaccine strategies for eradicating 
FMDV infections showed its effect in many countries 
worldwide. The process requires the application of an 
effective vaccine to eliminate circulating strains and 
prevent the introduction of new ones. In this study, we 
have used an immunoinformatic approach for the design 
and evaluation of a polyvalent multiepitope vaccine for 
FMDV. The introduced pipeline can be generalized to 
different FMDV serotypes, strains, or isolates based on 
circulating strains. The final construct presented in this 
study could protect against seven isolates of three FMDV 
serotypes. Multiple computational tools, including dis-
continuous B-cell epitope prediction, molecular docking, 
and molecular dynamic simulation, predicted the stabil-
ity and the strong interaction of the vaccine with bovine 
TLR-4 and TLR-2. The physicochemical properties of the 
vaccine underscore its potential as a promising candidate 
for further experimental validation. Future work should 

focus on testing the proposed vaccine experimentally to 
ensure its protective efficacy and the capability to induce 
humoral and cellular immune responses.
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