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Abstract 

The emerging field of canine cognitive neuroscience uses neuroimaging tools such as electroencephalography (EEG) 
and functional magnetic resonance imaging (fMRI) to map the cognitive processes of dogs to neural substrates 
in their brain. Within the past decade, the non-invasive use of EEG has provided real-time, accessible, and port-
able neuroimaging insight into canine cognitive processes. To promote systematization and create an overview 
of framings, methods and findings for future work, we provide a systematic review of non-invasive canine EEG studies 
(N=22), dissecting their study makeup, technical setup, and analysis frameworks and highlighting emerging trends. 
We further propose new directions of development, such as the standardization of data structures and integrat-
ing predictive modeling with descriptive statistical approaches. Our review ends by underscoring the advances 
and advantages of EEG-based canine cognitive neuroscience and the potential for accessible canine neuroimag-
ing to inform both fundamental sciences as well as practical applications for cognitive neuroscience, working dogs, 
and human-canine interactions.
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Introduction
The multidisciplinary field of cognitive neuroscience is 
a synthesis of cognitive psychology and neuroscience, 
aiming at mapping “elementary cognitive functions onto 
specific neuronal systems” ([1], pg. 613). Through the 
deployment of techniques such as the electroencepha-
logram (EEG) [2] and functional magnetic resonance 
imaging (fMRI) [3, 4], neuroscientists are able to perform 
empirical and quantitative analyses of cognitive pro-
cesses. For a comprehensive review of the history, meth-
ods, and current frameworks of cognitive neuroscience, 

readers are directed towards Gazzaniga, Ivry and Mun-
gun’s 2019 treatment of the field [5]. Another multidis-
ciplinary field is canine science, combining disciplines 
including evolution, genetics, cognition, ethology, physi-
ology, comparative medicine, and ecology [6–9]. Investi-
gating the recent surge of interest in the scientific study 
of the domestic dog, Aria and colleagues [10] found a 
sixfold increase in the number of studies in canine cogni-
tion and behaviour between the years 2006 and 2018, as 
compared to the preceding period of 1993 to 2005. This 
interest extends beyond purely veterinary, pharmaceuti-
cal, and basic neuroscience paradigms. Recent studies in 
canine science span such varied topics as genetics [11], 
evolutionary neuroscience [12, 13] and intelligence [14], 
as well as investigations into models of epilepsy [15], 
aging [16, 17] and dementia [18]. Recent developments, 
such as the rise of open-science multi-team initiatives 
such as the ManyDogs Project, which aims to investigate 
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behavioral traits across multiple centers and populations 
of dogs [19], and the Working Dog Project, which focuses 
on improving genetic selection strategies in dog breeding 
[20], herald the emerging trend of collaborative consorti-
ums to tackle fundamental questions in the field.

Berns et al. pioneered the use of fMRI in awake, non-
restrained dogs in 2012 [21], and in the following year, 
Kujala and colleagues were the first to successfully deploy 
non-invasive EEG with non-sedated dogs [22]. Further 
developments included the investigation of a range of 
cognitive processes and their neural underpinnings such 
as executive functioning [23], visual [22, 24], auditory [25, 
26], and olfactory [27] processing, social cognition [28], 
learning [29] and sleep [30, 31]. While the field of canine 
fMRI has received increasing scientific attention, non-
invasive canine EEG has eluded similar treatment. This 
is despite its noticeable strengths, including high tempo-
ral resolution, accessibility, and real-world applications. 
For these reasons, we offer a consolidation of the state of 
EEG-based canine cognitive neuroscience, providing an 
overview of the key conceptual framings, methodological 
approaches, and findings. Importantly, we note that the 
diagnostic use of EEG in dogs, such as for the diagno-
sis of epilepsy, is not in-scope of this review.

To that end, this systematic review contributes the 
following:

An identification and mapping of 22 non-invasive 
canine EEG studies based on a thorough literature 
review and an tailored database query paired with 
appropriate exclusion/inclusion criteria.
A systematic analysis of these studies dissecting 
their research question and participant make-up, 
technical setups deployed, dataset properties, and 
analytical frameworks and findings.
A critical discussion on future avenues for non-
invasive canine EEG identifying promising questions 
that can be pursued, ideal data practices, integration 
with other research sub-fields and beneficial meth-
odological and analytical refinements.

Methods
Data sources and search query construction
No complete literature review was available as a start-
ing point for this review, although two articles on 
sleep EEG in dogs [32] and sleep spindles [33] were 
encountered that provided useful context. To begin, 
we conducted an informal search using Google Scholar 
in February 2023, searching for ‘EEG in dogs’ and read 
through a number of obvious candidates ([22, 34–38] [26, 
30, 39, 40]) to identify commonalities. Of these papers, 
we noted that publishers included PLOS One, Springer, 
Elsevier, and the Royal Society, while we would also 

expect papers published in IEEE and ACM venues to be 
relevant. This allowed us to minimize necessary redun-
dancy in data sources by employing each publisher’s 
own search engine, as Scopus indexed all early identified 
papers, and papers by expected publishers.

After reading the initial set of studies, we made the 
following assumptions to aid in the construction of our 
search query, to ensure as broad a coverage as possible:

•	 Dogs are referred to interchangeably as ‘dog*’ or 
‘canine*’, even if articles do not necessarily include 
the full scope of the canis family; this required an 
additional exclusion criterion if papers include e.g., 
Canis lupus rather than just Canis lupus familiaris.

•	 EEG is referred to both as ‘EEG’ and ‘Electroenceph-
alography’ or more vaguely hinted at with terms such 
as ‘brain signals’ or ‘neural processes’ in paper titles, 
meaning we needed to search through abstracts as 
well.

•	 There is no consistent (from title) indication of 
whether the used EEG technique was invasive or 
non-invasive, this required liberal inclusion criteria 
to include any relevant study and stringent exclusion 
criteria to manually filter any invasive EEG study.

•	 The first non-invasive, non-sedated canine EEG study 
could be clearly identified as taking place in 2013 [22] 
so the year 2010 allowed for all relevant studies to be 
included.

Based on the above assumptions and reading of the ini-
tial papers, we constructed this search query optimized 
for the SCOPUS database in March 2023:

( TITLE ( ( canine* OR dog* ) ) AND TITLE-ABS-KEY ( ( eeg OR erp OR elec-
troencephalography ) ) ) AND PUBYEAR > 2010 AND PUBYEAR < 2024 
AND ( LIMIT-TO ( LANGUAGE , “English” ) )

The search query resulted in 205 articles in the SCO-
PUS database.

Study selection
We first liberally applied the inclusion criterion, followed 
by a set of three exclusion criteria – see Fig. 1 for an over-
view of the entire process and interim study numbers. 
The inclusion criterion was:

inc1 Studies applying electroencephalography to 
dogs (canis lupus familiaris)

The following exclusion criteria were used to refine the 
selection:

ex1 Studies of other canine species (e.g., wolves, 
jackals, coyotes) – we built in this potentially 
redundant exclusion criteria due to the polysemous 
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use of ‘canine’ in some literature, sometimes refer-
ring to its actual meaning of the Caninae subfamily, 
but at other times used as a synonym for dogs only.
ex2 Studies employing invasive applications of EEG 
– we define this as the physical ontology of the sub-
ject remaining unviolated, i.e. the epidermis of the 
subject dog is not pierced or excised. This excluded 
any study using intracranial EEG (iEEG) [41] as well 
as sub-dermal EEG that uses needle electrodes, a 
technique first used by Pellegrino and Sica (2004) 
[42] in a veterinary context as well as cognition 
studies such as by Howell and colleagues [43].
ex3 Studies employing anaesthesia or other form of 
sedation – we do include studies of naturally sleep-
ing dogs, which, indeed, form the majority of the 
studies conducted in this category

One author applied the inclusion and exclusion cri-
teria over the total set of 205 papers leading to a final 
selection of 22 articles. To ensure consistent appli-
cation of the criteria, another author independently 
coded a randomly selected 10% subset of the papers. 
Inter-rater reliability analysis indicated substantial 
agreement between authors on application of the inclu-
sion criterion (Cohen’s κ=0.69) criteria, as well as the 
exclusion criteria (resp. κ=0.69, 1.00, 1.00 for ex1, ex2, 
and ex3), leading to the same set of selected papers. 
We found that the validating author labeled more criti-
cally, which led to some discussion as to whether ret-
rospective studies were to be included; but effectively 
these had no effect on the actual selected publications 
as most were ruled out by both authors on grounds of 
the exclusion criteria.

Fig. 1  PRISMA flowchart of the study selection process
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Data extraction and analysis
We dissect the obtained studies according to the differ-
ent workflow stages of a scientific study: research ques-
tion and participants, data acquisition, and analysis/
findings, respectively. This process was done in entirety 
manually by one author. After providing an overview of 
the 22 studies, we break them down along the following 
three dimensions -

•	 Setups deployed to collect data: electrode types, 
montages, and amplifiers.

•	 Datasets collected in each of the papers: e.g., avail-
ability and quantity of data.

•	 Analysis frameworks and findings: e.g., pre-pro-
cessing pipelines (where relevant), and findings.

For each of these steps, we highlight and synthesize 
common themes and approaches and use this to pro-
vide a consolidated outlook on the field and suggestions 
for future work.

Results
Overview
The selected works are presented in Table  1. The 
dimensions we use and the overall trends of the studies 
were as follows :

•	 Topic investigated. We label each study with one or 
more of the following categories -

–	 visual processing : perception, discrimination or 
interpretation of images (n=3)

–	 auditory processing : perception, discrimination 
or interpretation of sounds (n=1)

–	 language processing : perception and comprehen-
sion of speech (n=3)

–	 learning : associative learning, memory, and prob-
lem-solving (n=4)

–	 emotion : interpretation of emotionally coded 
stimuli (n=2)

–	 social cognition : behavior with con-specifics or 
humans (n=2)

–	 sleep : stages and occurrence of patterns during 
sleep (n=14)

–	 methodology : approaches to data collection and 
analysis such as automation or application of 
machine learning (n=3)

•	 Specific research question. We briefly state the 
research question/hypothesis investigated in each 
study.

•	 Number of dogs. The number of participants in each 
study ranged from 2 [39] - 155 [46].

•	 Type of dogs. Here we refer to home/laboratory dogs, 
and their breed (specific/multiple).

•	 Dog Training. In this category, we describe the nature 
of training provided to the dogs for data collection 
in the study, distinguishing between studies that 
employed special training and those that did not. We 
use special training to refer to a dedicated training 
process consisting of multiple preparatory sessions, 
such as habituation to the equipment, conducted 
prior to actual data collection.

Overall, four different research centers in North Amer-
ica and Europe have conducted non-invasive canine EEG 
studies, with the majority of them coming from Eötvös 
Loránd University in Budapest, Hungary. The majority of 
studies (n=14) recorded EEG from sleeping dogs, taking 
advantage of the ease of recording higher quality data for 
longer periods and the presence of well-defined cross-
species EEG data-structures associated with sleep stages 
and features.

The majority of dogs were companion (home) dogs 
whose guardians were recruited using surveys, and con-
sisted of a diverse group of pure and mixed breeds across 
ages in both male and female animals. Four studies [22, 
34–36] record from purpose-breed laboratory Beagles 
and only these dogs underwent extensive training for 
EEG recording purposes, whereas companion dogs were 
habituated to equipment on the same day as recorded 
sessions.

EEG setups
To facilitate a systematic and rigorous comparison of 
studies, we compiled Table  2 outlining the six differ-
ent canine EEG setups used by reviewed studies. Some 
important dimensions of the setups are a) electrodes type 
and attachment, which includes the type of electrodes, 
method of attachment, whether fur was shaved, and the 
impedance of signals (a measure of conductivity at the 
electrode-skin interface); b) the number and montage 
of electrodes, which refers to the number of recording 
channels and the specific arrangement of electrodes; and 
c) the amplifier model and sampling rate.

Electrodes type and attachment
Electrodes are made of different conductive materi-
als and are generally categorized along two binaries - 
gel vs dry, and active vs passive. The benefit of different 
electrode types are still debated [55, 56], however, with 
regards to our review, all studies used passive gel elec-
trodes secured with surgical tape or electrode cream. 
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Table 1  Overview of the 22 reviewed studies

Study Ref Journal Lab location Topic Research 
question

No. of dogs Type of dogs Special training

Törnqvist et. al., 
2013

[34] Animal Cognition Jyväskylä Exploratory, Visual 
Processing

Do ERPs 
distinguish 
between human 
vs dog faces?

8 Lab-breed; 
Beagles

Yes; 1.5yrs, twice 
a week

Kujala et. al., 2013 [22] Plos One Jyväskylä Visual Processing Can non-invasive 
EEG detect 
changes in brain 
oscillations?

8 Lab-breed; 
Beagles

Yes; 1.5yrs, twice 
a week

Kis et. al., 2014 [30] Physiology & 
Behavior

Budapest Sleep Can non-invasive 
EEG detect 
changes in sleep?

22 home dogs; 
multiple breeds

No

Kis et. al., 2017 [40] Nature Scientific 
Reports

Budapest Sleep, Learning Are there 
associations 
between sleep 
quality and learn-
ing ability?

15 home dogs; 
multiple breeds

No

Iotchev et. al., 
2017

[44] Nature Scientific 
Reports

Budapest Sleep, Learning Are there features 
of sleep (spin-
dles) that predict 
learning rates?

15 home dogs; 
multiple breeds

No

Levitt et. al., 2018 [35] Journal of Neuro-
science Methods

Rhode Island Methodology Can ML (SVM) 
models detect 
EEG artifacts 
across humans 
and dogs?

9 Lab-breed; 
Beagles

Yes, unspecified

Bunford et. al., 
2018

[45] Nature Scientific 
Reports

Budapest Sleep What are 
some variables 
that affect sleep 
macrostructure?

16 home dogs; 
multiple breeds

No

Iotchev et. al., 
2019

[46] Nature Scientific 
Reports

Budapest Sleep How does sex 
and age affect 
non-REM EEG 
activity?

155 home dogs; 
multiple breeds

No

Iotchev et. al., 
2020a

[47] Nature Scientific 
Reports

Budapest Sleep, Methodol-
ogy

Are some 
measures 
of sleep spindles 
better predictors 
of learning rates?

46 home dogs; 
multiple breeds

No

Gergely et. al., 
2020

[48] Animals Budapest Sleep, Methodol-
ogy

What factors 
affect sleep 
scoring and can 
it be automated 
with ML?

10 home dogs; 
multiple breeds

No

Iotchev et. al., 
2020b

[49] Nature Scientific 
Reports

Budapest Sleep, Learning What 
is the relation 
between spin-
dle frequency 
and learning?

58 home dogs; 
multiple breeds

No

Kiss et. al., 2020 [50] Frontiers of Psy-
chology

Budapest Sleep, Social 
Cognition

Does sleep struc-
ture correlate 
with perfor-
mance in a coop-
eration task?

27 home dogs; 
multiple breeds

No

Reicher et. al., 
2020

[51] Journal of Sleep 
Research

Budapest Sleep Does canine 
sleep macro-
structure display 
the first-night 
effect?

24 home dogs; 
multiple breeds

No

Kujala et. al., 2020 [36] Nature Scientific 
Reports

Jyväskylä Visual Processing Can ERPs predict 
visual (faces) 
stimuli?

8 Lab-breed; 
Beagles

Yes; 1.5yrs, twice 
a week
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Four studies shaved the fur of participant dogs [22, 
34–36], with the goal of ensuring higher quality data 
by decreasing impedance, however studies that did not 
shave fur have achieved comparable levels of impedance. 
Higher impedance values result in a lower signal-to-noise 
ratio (SNR), although optimal electrode impedances vary 
relative to an amplifier’s input impedance [57] (but see 
also Kappenman and Luck [58] for a review). All studies 
reported keeping impedance values below 20 k �.

Electrodes number and position
Canines have smaller brains than humans and subsequent 
less space available for electrodes. The reviewed studies 
used between 1 to 7 channels, along with a ground and 
reference electrode. In comparison, human EEG stud-
ies typically vary between using 4–256 channels. While 
the far lower number of electrodes in canine EEG 
studies raises serious questions on the validity of the 

experiments, modern advances in hardware as well as 
advanced analysis techniques such as deep neural net-
works allow for meaningful inferences from few elec-
trodes [59]. For instance, Hartmann and colleagues 
were able to predict seizure episodes in humans using 
data from just two electrodes [60], and a plethora of 
researchers have been able to validate classical human 
EEG paradigms with 4–6 electrodes [61, 62]

Electrode montages in EEG research refers to the “logi-
cal, orderly arrangements of electroencephalographic 
derivations or channels that are created to display activ-
ity over the entire head and to provide lateralizing and 
localizing information” [63]. Human EEG research gen-
erally uses the 10–20 montage system, formalized in 
1957-58 by Herbert Jasper [64], to standardize electrode 
montages and ensure replicability across studies. Canine 
EEG has traditionally borrowed from the human 10–20 
system and the reviewed studies use similar derivations, 

Table 1  (continued)

Study Ref Journal Lab location Topic Research 
question

No. of dogs Type of dogs Special training

Magyari et. al., 
2020

[37] Royal Society 
Open Science

Budapest Language Pro-
cessing

Do ERPs 
distinguish 
between known/
unknown/non-
sense words?

17 home dogs; 
multiple breeds

No

Reicher et. al., 
2021a

[52] Nature Scientific 
Reports

Budapest Sleep Does sleep mac-
rostructure vary 
based on age?

91 home dogs; 
multiple breeds

No

Reicher et. al., 
2021b

[53] Nature Scientific 
Reports

Budapest Sleep Do dogs display 
hemispheric 
asymmetry dur-
ing NREM sleep?

19 home dogs; 
multiple breeds

No

Boros et. al., 2021 [38] Current Biology Budapest Language Pro-
cessing, Learning

Do dogs use 
statistical learn-
ing to segment 
speech and learn 
words?

19 home dogs; 
multiple breeds

No

Bálint et. al., 2022 [26] Royal Society 
Open Science

Budapest Auditory Process-
ing

Do ERPs 
distinguish 
between human 
and dog vocaliza-
tions?

17 home dogs; 
multiple breeds

No

Karpiński et. al., 
2022

[39] Journal of Veteri-
nary Behavior

Lublin Exploratory Do ERPs 
distinguish 
between voice 
commands?

2 home dogs; 
multiple breeds

No

Carreiro et. al., 
2022

[54] MDPI Animals Budapest Sleep, Social 
Cognition

Do sleep fea-
tures correlate 
with attachment 
towards human 
guardians?

42 home dogs; 
multiple breeds

no

Carreiro et. al., 
2023

[31] Nature Scientific 
Reports

Budapest Sleep Does sleep effi-
ciency correlate 
with guardian-
rated hyperactiv-
ity?

86 home dogs; 
multiple breeds

No
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although setups differed from each other in the montages 
used and authors differed in the labels used for specific 
montage positions. For an outlook of the montages used 
in the reviewed studies, see Figure 2. A notable challenge 
with standardizing electrode montages in dogs is the 
remarkable variance in head shape and size across canine 
breeds. One way to solve this challenge is to record only 
from dogs of the same breed and avoid it all altogether, 
which was the case with the studies recording only from 
lab-bred Beagles [22, 34–36]. Another approach is to use 
the relative distance between breed-invariant anatomical 
markers followed by the Budapest setups [30, 37].

Traditional electrode montages on humans when 
translated to dogs might suffer from a higher rate of mus-
cular artifacts due to the presence of a muscular scalp in 
dogs, which motivated the authors of the Budapest set-
ups to place electrodes on the anteroposterior midline, or 
sagittal crest, of the canine skull (Fz, Cz, and Pz respec-
tively), as it is a bony ridge that minimizes muscular arti-
facts. These setups also used either 1 or 2 electrodes close 
to the eyes (F7 and F8) to measure electrooculography 
(EOG) signals. EOG signals are useful for understanding 
eye activity, such as blinks, which can have an effect on 
recordings from other electrodes. Jyväskylä setups dif-
fered in their approach by positioning electrodes laterally 
- on the frontal cortex F3 and F4, on the posterior cortex 
P3 and P4, and the temporal cortex T3 and T4 (the latter 
only in the 2020 study [36]).

Finally, the position of the reference electrode plays 
a key role in recordings as EEG data is derivational 
and signals from any electrode are meaningful only in 

respect to a reference electrode (or electrodes). In the 
Budapest setups, either the center of the sagittal 
crest (Cz) or the bony ridge of the occipital protu-
berance, or occiput, (Pz) was used as a reference, the 
latter chosen given its relative distance from muscu-
lar activity. The Rhode Island setup also used a Cz ref-
erence. Meanwhile, Jyväskylä setups used an electrode 
placed on the ear as the reference, as did the sole Lublin 
study. Figure 2 gives an overview of different potential 
electrode montages used across the selected studies.

Amplifier model and sampling rate
Various factors determine amplifier performance 
including sampling rate, input range, amplifier imped-
ance, bandwidth, and the common mode removal ratio 
(CMRR). A detailed discussion of these factors is outside 
the scope of this review (readers are directed towards 
the 2023 review of EEG systems by Niso and colleagues 
[65] for a discussion). One feature worth highlighting is 
the sampling rate which refers to the number of samples 
that are digitally acquired per second (measured in Hz). 
Higher sampling rates are useful primarily to measure 
higher frequency brain activity, given by the Nyquist-
Shannon theorem [66] that states that for any periodic 
signal of a given frequency, a sampling rate higher than 
two times the frequency of the signal is needed to accu-
rately detect its presence. Sampling rates of amplifiers 
used ranged from 250–1024 Hz. As all studies focused 
analysis on bandwidths between 0-50Hz, all amplifiers 
had a sufficient sampling rate.

Fig. 2  Different electrode montages used by the six technical setups. Electrode labels follow from the human 10–20 system, where letters indicate 
the lobe - Fp=pre-frontal, F=frontal, P=parietal, T=temporal, and C=center. The left and right zygomatic arch are also depicted as LZA and RZA. Odd 
numbers refer to electrode placement on the left side and even numbers indicate placement on the right side of the brain. Reference electrode 
positions are highlighted in orange. It is worth pointing out that large variance amongst canine breeds means the figure is not representative of all 
canine individuals
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Datasets
The six different technical setups described in the prior 
section were used to acquire 18 datasets, summarized 
in Table  3. The discrepancy between number of papers 
and datasets is because some papers developed novel 
methodological approaches [44] or refinements [47, 48] 
using older datasets, or deploying a different analytical 
framework on the same dataset [22]. Many studies use 
a combination/amalgamation of different data sources 
so the datasets presented here should not be assumed to 
be well-demarcated and unique. Moreover, the overall 
number of dogs is difficult to establish, as we observed 
a considerable overlap of participants between studies 
and datasets, with the same dogs being recorded multi-
ple times and the same datasets being reused in different 
papers. Datasets were categorized into either epoch or 
continuous paradigms, based on which, the number of 
events/minutes of data per dog and per dataset was cal-
culated. All but one [35] of the awake dogs datasets were 

epoched and all sleep datasets were continuous. Finally, 
we noted the availability of the datasets. No datasets were 
freely available in their entirety and six datasets were 
partially available, either requiring a) additional author 
authorization on a data repository; b) an email request; 
c) missing important metadata; d) missing raw data, i.e. 
containing only processed data.

Analysis and findings
We review and consolidate awake and asleep dog studies 
separately, given their different frameworks, workflows, 
and results.

Preprocessing
Preprocessing pipelines in EEG data analysis involve 
several steps to clean and prepare the data. One of 
these steps is artifact removal that aims to identify and 
remove segments of the signal containing unwanted 
noise or corruption. These artifacts can originate 

Table 3  Overview of the 18 datasets created by non-invasive canine EEG studies

Name Papers No. of dogs Unique 
dogs?

Type Conditions Events OR 
sessions per 
dog

Duration of 
recording 
per dog 
(min)

Total events 
OR duration 
of data

Open source?

Faces1 [22, 34] 8 Yes Epoch, Con-
tinuous

2 240 80 976 No

Sleep_Explor-
atory1

[30] 22 Yes Continuous 1 1 180 3960 No

Sleep_Explor-
atory2

[30] 7 No Continuous 2 2 360 2520 No

Sleep_Learn-
ing1

[40] 15 Unsure Continuous 2 2 360 5400 No

Auto_Arte-
facts

[35] 9 Yes Continuous 1 90 N/A N/A No

Sleep_Activity [45] 16 Unsure Continuous 2 2 540 8640 No

Sleep_Vari-
ation

[46] 155 Unsure Continuous 1 1 180 27900 No

Sleep_Aging [47] 58 Unsure Continuous 2 2 N/A N/A No

Sleep_Indi-
vidual

[50] 27 Unsure Continuous 1 1 180 4860 No

Sleep_Adapt [51] 24 Unsure Continuous 3 2 180 4320 No

Faces2 [36] 8 Unsure Epoch 8 1200 N/A 8000 Partially A

Phoentics [37] 17 Unsure Epoch 3 240 N/A 4080 Partially B

Sleep_Devel-
opment

[52] 91 Partial Continuous 1 3 540 49140 No

Statistical_
Learning

[38] 19 Unsure Epoch 4 320 12 6080 Partially B

Vocalizations [26] 17 Unsure Epoch 4 192–384 N/A N/A Partially C

Pilot_Explora-
tory

[39] 2 Yes Epoch 2 2 N/A N/A No

Sleep_Attach-
ment

[54] 43 Unsure Continuous 1 1 1-3h N/A Partially D

Sleep_Hyper-
activity

[31] 86 Unsure Continuous 1 1 1.5-3h N/A Partially D
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from various non-neural sources, such as eye blinks, 
muscle activity, or external interference [67]. Artifact 
removal can be performed using automated methods 
that apply predefined thresholds, such as amplitude 
criteria, to detect and exclude segments with excessive 
noise. Alternatively, manual inspection techniques like 
independent component analysis (ICA) or video moni-
toring can be employed. The choice between manual 
and automated detection methods is a topic of ongoing 
debate in the field, as each approach has its strengths 
and limitations [68].

Reviewed studies differed in their application of 
pre-processing techniques, which have potential 
important ramifications for the analysis and valid-
ity of their respective findings. For example, Magyari 
et  al. (2020) [37] tested two different artifact removal 
procedures - a multi-level method combining quan-
titative and qualitative steps, as well as a single-step 
approach using filtering and amplitude-based artifact 
removal. The multi-level approach consisted of auto-
mated amplitude-based rejection, manual video cod-
ing of movement and manual inspection of EEG data. 
The single-step consisted only of automated artifact 
removal and filtering. The results showed similar 
condition differences between the two cleaning pro-
cedures, with a varying percentage of rejected trials. 
Approximately 75% of the trials were rejected in the 
multi-level data cleaning, while 53% were rejected in 
the amplitude-based procedure. However, the analy-
sis findings did not differ between preprocessing 
pipelines, and the authors conclude that both manual 
multi-step and automated single-step pipelines were 
equivalent. Subsequent studies from the Budapest 
group only use the automated amplitude-based rejec-
tion step.

Kujala et al. [36] differed in their approach by apply-
ing a manual inspection of independent component 
analysis (ICA) components to mitigate muscular and 
other artifacts. Artifact-related components were vis-
ually identified and excluded, while a general linear 
model was used to remove potential electric leakage 
from the stimulus trigger signal to EEG channels.

In contrast, Levitt and colleagues [35] trained a sup-
port vector machine (SVM) classifier for the auto-
mated detection of EEG artifacts in human, canine, and 
rodent subjects. They labelled artifacts in the canine 
EEG data by utilizing inputs from more than one 
independent observers, although no specifications 
are given on how coding conflicts were resolved. The 
models showed relatively high accuracy across species 
in identifying artifacts caused by skeletal and ocular 
muscles, with an accuracy of 80.57% and an AUC-ROC 
value of 0.87 for canines specifically.

Analysis and findings of wakefulness EEG in dogs
Awake dog EEG activity accounts for 8 of the 22 exam-
ined studies in this review. This section provides an 
overview of the analysis frameworks and findings of 
the 8 studies.

One of the studies, Levitt et al., focused on training a 
SVM model to detect artifacts for preprocessing. Two 
of the remaining seven studies were exploratory, with 
Kujala and colleagues [22] showing for the first time the 
ability to perform non-invasive EEG in eight awake dogs 
in 2013. They observed changes in the power spectrum 
over the P3/P4 (parieto-occipital) electrodes during the 
presentation of a visual stimulus vs rest. Karpinski et. al. 
[39] recorded pilot data from two companion dogs dur-
ing rest and after two different commands, also observing 
qualitative changes in the power spectrum over the F3/F4 
(frontal) electrodes.

The remaining five studies [26, 34, 36–38] deployed 
event-related potentials (ERP) frameworks to understand 
visual, auditory and language processing. Törnqvist et al. 
[34] investigated the ERPs of dogs in response to human 
and dog faces. The study found that ERPs corresponding 
to early visual processing were detectable at 75–100 ms 
from stimulus onset, and significant differences for dog 
and human faces could be identified at around 75 ms at 
posterior sensors. Another study [36] deployed a similar 
experimental paradigm, with the addition of emotionally 
valenced faces and objects, and detected a group-level 
response sensitive to emotional expressions at 130–170 
ms, and the differentiation of faces from objects occur-
ring at 120–130 ms. The authors also trained a support 
vector machine (SVM) classifier on the EEG data to 
discriminate between responses to pairs of images. The 
classification accuracy was highest for humans/dogs vs. 
scrambled images, with the most informative time inter-
val being between 100–140 ms and 240–280 ms after the 
presentation of stimuli.

Two studies investigated facets of language process-
ing using ERP paradigms [37, 38]. Magyari et. al [37] 
explored the group-level ERPs of dogs listening to known, 
unknown, and nonsense words, finding a significant dif-
ference in ERP values between known and nonsense 
words at 650–800 ms. They also found a positive asso-
ciation between the word usage frequency by the dog’s 
guardian and the individual dog’s ERP effects, providing 
evidence that the association may arise from familiarity 
with the words. The second study to deploy an ERP para-
digm [38] investigated the neural processes underlying 
speech segmentation. The authors examined ERPs from 
the presentation of artificial words, after participants had 
been exposed to a continuous speech stream that differed 
in the distribution of words . In their study, two impor-
tant factors were considered: transitional probability and 
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word frequency. Transitional probability refers to the 
likelihood of one sound or word following another in a 
sequence, reflecting the statistical regularities of the lan-
guage. Word frequency, on the other hand, represents 
how often a word occurs in a given language. The results 
of the study showed that the ERPs exhibited an early 
effect (220–470 ms) related to transitional probability 
and a late component (590–790 ms) modulated by both 
word frequency and transitional probability, indicating 
the involvement of multiple cognitive processes in speech 
segmentation.

Finally, Balint et  al. [26] investigated the auditory 
processing of 17 dogs in response to human and dog 
vocalizations. They found that, similar to humans, dogs 
exhibited differential ERP responses based on the species 
of the vocalizer. Specifically, within the time window of 
250–650 ms after stimulus onset, ERPs were more posi-
tive for human vocalizations compared to dog vocaliza-
tions. Furthermore, a later time window of 800–900 ms 
demonstrated an ERP response that also reflected the 
species of the vocalizer. These results highlight the exist-
ence of species-specific processing of vocalizations in 
dogs and provide insights into the neural mechanisms 
underlying their perception of human and non-human 
vocalizations.

Analysis and findings of sleep EEG in dogs
EEG recordings of sleeping dogs were examined in 14 of 
the 22 studies in this review.

In 2014, Kis and colleagues pioneered the use of non-
invasive EEG to record brain activity in sleeping dogs, 
providing a tool to investigate fundamental questions 
about sleep architecture in canines [30]. While most 
studies relied on human coding and analysis, automated 
techniques using algorithms to find specific patterns 
called spindles [44, 47] were developed and refined. Fur-
thermore, machine learning models, including logistic 
regression (LogReg), gradient boosting trees (GBTs), 
as well as convolutional neural networks (CNNs), were 
also deployed and validated to predict sleep stages in 
dogs [48].

Another study investigated the effect of pre-sleep activ-
ity, timing, and location on sleep macro-structure, such 
as the duration of sleep and the transitions between sleep 
stages [45]. The authors discovered that the intensity of 
pre-sleep activity and the location and timing of sleep 
sessions had interactive effects on sleep macrostruc-
ture. Pre-sleep intensive activity and night-time sleeping 
were associated with more time spent in both non-rapid 
eye movement (NREM) and rapid eye movement (REM) 
sleep. Furthermore, they found that dogs sleeping in a 
location outside their home were less likely to experience 
REM sleep. A later study by Reicher and colleagues [51] 

investigated the well-known first-night adaptation effect 
seen in humans and found that it also manifests in dogs, 
albeit with marked differences. The first-night adapta-
tion effect refers to the recurring observation that the 
first recorded sleep session in humans differs from all 
subsequent recordings, as it is marked by the necessity 
to adapt to the recording conditions. In dogs, a signifi-
cant difference was observed between the first and third 
recordings, with dogs spending more time in sleep and 
having a shorter latency to drowsiness in session 3 than 
in session 1. Reicher and colleagues [53] also investigated 
whether dogs exhibit functional hemispheric asymmetry, 
a phenomenon in which the right and left hemispheres of 
an individual displays differential activity during a cogni-
tive process, frequently observed during sleep in aquatic 
mammals [69]. They found a complex asymmetry contin-
gent on the recording session, sleep cycle, and type of fre-
quency, with some similarities but also many differences 
between canines and humans.

In addition to exploring fundamental and comparative 
questions, researchers have also investigated the effect of 
biological variables such as age, sex, and weight on sleep 
activity. The effect of age on sleep macrostructure is sig-
nificant, showing correlations with the power of some 
frequency bands [52]. Specifically, past 8 months of age, 
older dogs had higher powers of alpha, beta and gamma 
frequencies, and lower delta frequencies, compared to 
younger dogs. Another approach has involved the meas-
urement of spindles, which are phasic bursts of thalamo-
cortical activity that appear in the cortex as transient 
oscillations in the sigma range (typically defined in 
humans as 9–16 Hz) [70]. In 2017, Iotchev and colleagues 
[44] developed an algorithm to quantify sleep spindles 
in dogs and subsequent work has discovered associa-
tions between the frequency, density, and amplitude of 
spindles with the age and sex of canine participants. It 
is worth highlighting the observation that an increase 
in age was associated with a decrease in the density and 
amplitude of slow spindles [46].

Another theme explored by researchers in dog EEG is 
the relationship between sleep activity and other cog-
nitive processes. For example, Kis and colleagues [40] 
observed a connection between sleep activity and learn-
ing rates, specifically that increased beta and decreased 
delta activity during REM sleep were related to higher 
performance on a novel learning task. Which could be 
related to the processes described in Iotchev’s work, on 
the potential significance of spindle activity for learning 
and memory processes [44, 47, 49]. These studies suggest 
that learning gain (increases in performance on cognitive 
tasks between sessions inter-spaced by sleep) is corre-
lated with measures of spindle density. While the authors 
acknowledged potential confounders with demographic 
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variables, the studies suggest a possible causal role of 
spindles in the consolidation of memory.

Regarding a different association with sleep qual-
ity, Carreiro et al. [31] investigated the relation between 
sleep activity and owner-rated hyperactivity and found 
that dogs rated as more hyperactive and impulsive dem-
onstrated less total sleep time, a reduced percentage 
of REM sleep, and lower spindle density compared to 
dogs rated as less hyperactive and impulsive. Moreover, 
owner-rated hyperactivity and impulsivity were associ-
ated with increased wakefulness after sleep onset and 
greater sleep fragmentation.

Finally, two studies explored the relation between sleep 
activity and features of human-canine interaction - spe-
cifically cooperation and attachment. Kiss et  al. [50] 
deployed an experimental paradigm testing the ‘audi-
ence effect’ between dogs and their human guardians, 
which relates to the difference in task performance based 
on the presence of visual attention. Spectral sleep analy-
sis revealed associations between REM and non-REM 
power activity and susceptibility to the audience effect. In 
other words, the willingness of participant dogs to follow 
task instructions, irrespective of whether their guardian 
was looking at them, was associated in a trait-like man-
ner with alpha, beta, theta, delta frequency bands power 
during sleep. Carreiro et  al. [54] used an adapted form 
of the Strange Situation Task (SST) [71] to index attach-
ment levels of canine subjects and investigated whether 
derived attachment scores correlated with sleep activity 
features. They found associations between the level of 
attachment and the duration of NREM sleep, as the activ-
ity in certain frequency bands.

Discussion
Review of findings
Temporal nature of dog cognitive processes in wakefulness
Non-invasive EEG uses electrodes placed on the scalp 
that pick up signals that are the end product of the inte-
gration of postsynaptic potentials of hundreds of thou-
sands of neurons traversing from the brain across tissue, 
bone, muscle, skin and hair. This leads to a measure of 
brain activity with a low spatial resolution but high tem-
poral resolution [72]. Effectively, this means that the 
inferences from awake canine EEG data are related to 
fine-grained features of temporal activity. This is what 
we saw from the five studies that deployed hypothesis-
driven ERP analysis frameworks to investigating facial, 
vocalization and speech comprehension, with the sig-
nificant time-windows displayed in Table  4. Meaning-
ful inferences can be derived from a wide range of times 
(between 30-950ms) post onset of a stimulus, as previ-
ously highlighted by a study on the potential of machine 
learning (ML) models such as Support Vector Machines 

(SVMs) in predicting stimulus categories based on activ-
ity in such time-windows [36].

Relationship between sleep and physiological traits in dogs
In contrast to wakefulness dog studies, the reviewed 
sleep studies took a different approach in their analysis 
framework. While the high temporal resolution of EEG 
was occasionally leveraged in the spindle studies [46, 47], 
the main focus was on investigating associations between 
more general sleep stages and patterns and psychologi-
cal traits. Some of the significant correlations found are 
highlighted in Table 5.

Comparisons between dog and human EEG
Non-invasive EEG with humans has a rich literature, and 
reviewed studies often used comparative framings to gen-
erate hypotheses or provide explanatory models. An over-
view of some of the overlapping components are provided 
in Table  6. The N1 component, well-studied in human 
subjects [73], appears to also be present in canines. Kujala 
(2013) [22] noted a deflection at 75ms in response to visual 
stimuli, earlier than typically observed in human studies. 
This component, observed primarily in posterior channels 
(P3/P4), appears to differentiate between human and dog 
faces. Boros (2021) [38] observed a N100 effect at electrode 
Fz as opposed to electrode Cz for word stimuli. A face-
sensitive component, representing a holistic representation 
of a face, appears at 170ms post stimulus for humans [74]. 
Kujala (2020) [36] identified emotional expression-depend-
ent effects between 127-170ms from stimulus onset, sug-
gesting face processing in dogs may be connected with 
the processing of the affective content of the stimulus. The 
word-familiarity effect, visible in human infants between 
200-400ms [75] post word-onset, may also be present in 
dogs. ERP differences between WORDS and NONSENSE 
conditions appeared between 650-800ms post word-onset, 
towards the end of the words [37].

Table 4  Overview of selected time-windows that had significant 
event-related potential activity

Time-window (ms) Description Studies

30–40 Aggressive dog faces [36]

75–110 Difference between faces/
objects and scrambled images

[22, 36]

220–470 Word segmentation (transi-
tional probability)

[38]

250–650 Species vocalization sensitivity [26]

360–400 Difference between dog 
and human faces

[36]

590–790 Word frequency [38]

650–850 Known versus nonsense words [37]

800–900 Valence in vocalizations [26]
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The P300 is a component of the event-related potential 
(ERP) that is typically elicited in the process of decision 
making [76]. It is most commonly evoked during “odd-
ball” tasks, where the participant is asked to respond to 
infrequent or unexpected stimuli amongst a set of stand-
ard stimuli. The P300 wave occurs roughly in the range 
300–600 milliseconds after the presentation of the stim-
ulus and is understood to be correlated with the degree 
of attention allocated to a stimulus [77]. Dogs exhibited 
a P300 response in the study by Balint (2022) [26], with 
a more positive ERP response to human as compared to 
dog vocalizations between 250 and 650 ms, which may 
reflect a difference in the motivational significance and 
allocated attention to human and dog vocalizations.

Lastly, the N400 component is a well-researched event-
related potential (ERP) [78, 79] that is often associated 
with semantic processing in language comprehension. 
It’s characterized by a negative peak occurring around 
400ms post-stimulus onset. Dogs exhibited a more 

positive deflection for words with high transitional prob-
ability than with low transitional probability between 
220–470 ms after word onset, with late ERP effects also 
observed between 590–790 ms, potentially representing 
a higher order recognition at the word level.

Avenues for future development
Unexplored questions
While reviewed studies explored the neural correlates 
of visual and auditory processing, olfactory processing 
has so far been unexplored. Studies with humans indi-
cate that relevant olfactory processing features can be 
extracted from EEG data [80, 81]. An understanding 
of the neural correlates of olfaction would be vital to a 
greater understanding of a dog’s perception and cogni-
tion. Early studies that measured EEG of sedated dogs 
showed promise in decipherable differences between 
evoked potentials between stimuli [82] and multiple 
studies using fMRI have observed meaningful neural 
correlates from olfactory tasks in dogs [27, 83, 84].

Similarly, studies exploring questions of cognitive 
control or executive function, defined by Gazzaniga 
and colleagues as the “set of psychological processes 
that enable us to use our perceptions, knowledge, and 
goals to bias the selection of action and thoughts from 
a multitude of possibilities” [5], have remained rela-
tively underexplored. Cognitive control encompasses 
a wide range of processes, including working memory, 
attentional control, cognitive flexibility, and inhibitory 
control, and some precedent for into these domains 
is provided by prior canine cognitive research using 
fMRI [23, 85]. As with olfaction, questions of cogni-
tive control not only inform us about the neural under-
pinnings of canine cognition but also have significant 
practical value in the way humans communicate with 
and train dogs.

Table 5  Overview of selected associations between sleep 
macrostructure and patterns of sleep and physiological and 
psychological states

Sleep feature Associated physiological 
or psychology state/trait

Studies

Duration in NREM 
and REM

Pre-sleep intensive activity, 
time and location of sleep, 
owner-rated hyperactivity

[31, 45]

Alpha frequency 
power

Age, cooperation, attach-
ment

[50, 54]

Beta and delta fre-
quency power

Age, learning rate, coop-
eration

[40, 50]

Gamma frequency 
power

Age [51]

Frequency, density, 
and amplitude 
of spindles

Age, sex, learning gain, 
owner-rated hyperactivity

[44, 46, 47, 49]

Table 6  Overview of selected overlapping EEG components between humans and dogs

Component Human Canine

N1 (100ms) First negative deflection post-stimulus 
onset

Occurs at 75ms in response to visual stimuli, can differentiate 
between human and dog faces.

Face-sensitive (170ms) Holistic representation of a face is gener-
ated at 170 ms post stimulus onset

Emotional expression-dependent effects at 127–170 ms 
post stimulus onset, suggesting face processing in dogs may be 
connected to the processing of the affective content

Word-familiarity (200-500ms) Observable word-familiarity effect 
in human infants

ERP differences between WORDS and NONSENSE conditions 
appeared between 650 and 800 ms following word-onset

P300 and LPP (300ms) Associated with attention and stimulus 
evaluation

Dogs show a differential ERP response depending on the species 
of the caller between 250 and 650 ms, suggesting attentional dif-
ferences to human and dog vocalizations

N400 (400ms) Indicates speech segmentation of candi-
date words

Significant effect of transitional probability (220–470 ms) 
and possible higher order recognition (590–790 ms) after word 
onset
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Intertwined with these questions on cognitive control 
are questions on the onset and processing of emotions. 
Both Kujala et. al. [36] and Balint et. al. [26] investi-
gated the effect of positive and negative stimuli, and 
found observable differences in the respective evoked 
potentials. A broader and deeper investigation into the 
realm of canine emotions would likely elucidate further 
such evidence, as work with fMRI on emotions such as 
jealousy shows [28, 86]. Relatedly, it is worth investi-
gating whether fundamental physiological states, such 
as hunger, stress, and the need of elimination, are also 
represented by neural correlates that can be be consist-
ently identified by non-invasive EEG. A fundamental 
constraint on such questions is the poor spatial depth of 
EEG, as emotional and physiological processing involve 
structures located deeper in the brain, to which EEG is 
not the adequate technique to map.

Another underlying challenge with some of these ques-
tions is the problem of ascertaining ground truth. This is 
especially made apparent by the question of identifying 
emotions and to create ethical experimental conditions 
where specific emotions can be consistently engendered 
in a non-human animal. However, there is potential in 
cross-modality methods being used to triangulate such 
ground truth, such as the use of machine vision [87] and 
FACS (Facial Action Coding System) [88] as well as phys-
iological data on respiration and heart-rate from wear-
able sensors [89, 90].

Finally, the majority of reviewed studies deployed 
group-level analysis frameworks. Such frameworks have 
dominated canine cognition research, indeed Arden and 
colleagues find that from 1911 to 2016, only three stud-
ies took an explicit individual-differences approach to 
exploring canine cognition [14]. Given the large inter-
species variation amongst dog breeds, especially in head 
and brain shape, a greater number of individual-differ-
ences analyses is well-warranted.

Standard setups for dog EEG
A challenge downstream of canine variance is the diffi-
culty in standardizing electrode montages. The conven-
tion used in human research is the 10–20 system that 
allows for a consistent placement of electrodes across 
individuals [64]. Reviewed studies borrowed from the 
human 10–20 system in the placement of electrodes, 
although they differed in their labels for similar elec-
trode montages. An important question is if the 10–20 
system is capable of transferring over to canines in a 
useful way given the marked and asymmetrical differ-
ence in head shapes between dolichocephalic, meso-
cephalic, and brachycephalic dogs [91]. For instance, 
the distance of a 10% posterior increment between 
a greyhound and a bulldog would likely lead to stark 

differences in the brain regions that are recorded by the 
same electrode position [12].

A related issue is the lack of a standard reference elec-
trode. Three different electrode position labels were used 
by the six different setups, and it is not clear that these 
labels refer to the same anatomical position. As men-
tioned prior, the position of the reference electrode has 
a strong and irrevocable influence on the EEG record-
ing, and it is unlikely that meaningful comparisons can 
be made across subjects and labs, if the same anatomical 
reference is not used. Four studies used the ear as a ref-
erence position, which runs contrary to the 2020 recom-
mendations for reproducible human EEG research issued 
by the Organization for Human Brain Mapping (OHBM) 
[57], which recommended against physically linked ear-
lobe or mastoid electrodes as they are not a neutral refer-
ence and can introduce distortions in the data that make 
modelling intractable. This is likely the case for canine 
EEG as well, especially given the natural tendency for 
dogs to move their ears to attune to stimuli, although it is 
important to note the influence of breed type, as Beagles 
arguably display less ear movement given their floppy 
nature. The other four setups either use Cz or Pz as a ref-
erence. It is worth noting, as the authors themselves do 
[26], that the choice of Pz could lead to an attenuated 
recording from Cz relative to Fz, given the relative dis-
tance between the two. At the same time, the choice of 
Cz as a reference could attenuate relevant sleep sig-
nals, as physiological transients to be dominant over 
the central region of the cortex.

It is also important for the reference electrode to be 
close to the same sources of noise as the channels, to 
ensure relevant noise in the channels is eliminated. 
Future research could incorporate other reference sys-
tems such as bipolar montages, where each channel rep-
resents the potential difference between two adjacent 
electrodes, or the laplacian montage, where the reference 
is averaged signal of neighboring electrodes [63].

The development of a standard montage and validation 
of different reference montage systems, centered on the 
specificity of canine anatomy, and equipped to deal with 
the large variance amongst canine individuals would be 
greatly beneficial to future progress in the field.

A standard data structure for dog EEG
As the volume and complexity of cognitive neuroscience 
methods has grown, several challenges emerged in the 
organization, dissemination, and analysis of data, lead-
ing to the creation of new standards and protocols for 
neuroscience data structure and management. The brain 
imaging data structure (BIDS), first proposed in 2016 
for magnetic resonance imaging [92], is an exemplar of 
such a standard that embodies the FAIR principles of 
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findability, accessibility, interoperability, and reusability 
[93]. Recently, a BIDS standard for EEG data - EEG-BIDS 
- was proposed to address the same concerns [94]. BIDS 
allows for the friction-less sharing of data within and 
between laboratories, as well as enabling the automation 
of analysis scripts, that all serve to address the replicabil-
ity of findings.

As noted prior, none of the reviewed studies had data-
sets that were fully accessible to external researchers. 
Three studies that did attempt to make data open-source 
lacked the necessary information to replicate analy-
sis, either omitting raw data or lacking vital meta-data. 
While researchers should be continued to be encouraged 
to open-source their data, in the vein of suggested guide-
lines by the Organization for Human Brain Mapping 
(OHBM), it is also vital that such shared data is interop-
erable and accessible for researchers across labs and time. 
Adapting EEG-BIDS for canines would be a crucial step 
to ensuring replicable and robust canine EEG research, 
and can readily be done, with the primary challenge 
being the adoption of a standard anatomical coordination 
system to serve as the necessary metadata file. As such 
a data structure would require adoption by researchers 
in the field and it should be a priority to ensure consen-
sus on its creation and use. Additional canine specific 
metadata, such as head size measurements, might also 
be included in such a protocol to allow for flexibility 
and refinement in analysis. Upon the adoption of canine 
EEG-BIDS, data can be made accessible on a neuro-
science-specific repository such as OpenNeuro, which 
would allow for large datasets. Furthermore, common 
analysis pipelines, such as developed by the BCI2000 
open source system for humans [95], could be readily 
adapted to canine data, opening up the world of canine 
brain-computer interfaces.

Improving signal‑to‑noise ratio
The presence of a furry and muscular scalp makes 
improving the Signal-to-Noise Ratio (SNR) an impor-
tant challenge to overcome for non-invasive canine EEG 
experiments. One approach to improving SNR would 
be using electromyography (EMG), alongside EEG, to 
quantify the contribution of scalp muscle activity. With 
enough measurements from individuals and across dog 
breeds, it could be possible to regress out muscle activ-
ity from neural activity, and allow robust recordings from 
further electrode positions.

Alongside, impedance benchmarks for different breeds, 
as well as for different electrode types (e.g. wet vs dry), 
would inform optimal electrode design to increase SNR. 
An example of such a study was performed by Luca and 
colleagues for wired vs wireless sub-dermal electrodes 

with canines [96]. The use of custom canine phantoms to 
measure impedance for different systems could also be 
productive, as seen for human EEG studies [97–99]. It is 
worth noting that the majority of reviewed studies used 
wired systems and only one study used a canine-specific 
cap to hold electrodes in place. The use and development 
of canine-specific caps coupled with wireless modern 
systems would greatly reduce the noise from electrode 
slippage and wire movement [65] and lead to an increase 
in SNR. Moreover, such systems would allow experi-
ments in freely moving dogs in naturalistic settings.

Along with custom wireless canine systems, the use of 
active electrodes, over the passive one used by all studies, 
have the potential to greatly boost SNR. Active electrodes 
consist of electrodes with a mini-amplifier system loaded 
onto the electrode itself, boosting signal quality at the 
source, and thus increasing SNR overall [100]. Another 
avenue could be the creation of ground-truth standardi-
zation tests based on steady-state visual-evoked poten-
tials (SSVEPs) [101, 102]. A SSVEP is the brain’s evoked 
potential in response to the presentation of periodically 
flashing visual stimuli, and this has been observed to 
form a stable EEG wave with a frequency that matches 
the presented stimulus. Thus, a SSVEP framework can 
provide a grounding upon which the SNR of a particular 
system can be measured. Auditory steady-state responses 
(ASSRs) are similar to SSVEPs but with specific frequen-
cies embedded in audio. ASSR paradigms are poten-
tially easier to do with dogs than SSVEPs as dogs don’t 
have to be trained to stare at a flashing stimulus. Similar 
to SSVEPs, ASSRs can provide a metric to ascertain the 
SNR of a system [103].

Finally, the detection of artifacts is crucial to ensur-
ing high SNR. All awake experimental reviewed studies 
deployed manual or algorithmic preprocessing pipelines 
to clean their recorded canine EEG data. However, as 
shown by Levitt and colleagues [35], machine learning 
models are capable of eye-blink and muscular artifact 
identification and removal for non-invasive canine EEG 
data, although it is important to point out the limited 
accuracy of 80%. Moreover, the same models used for 
human EEG data performed well when trained on canine 
EEG data, suggesting the potential for transferring mod-
els with weights from human EEG data to canine EEG 
data. While the use of ML artifact removal pipelines con-
tinues to be debated in the field [68], and further larger 
studies should be conducted before making any strong 
conclusions, it seems possible for ML preprocessing 
pipelines to be a valuable addition to the field, especially 
as more than half the data from some awake dog studies 
had to be manually thrown out because of artifacts [37]. 
As such pipelines could feasibly allow the identification 
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and removal of artifacts without losing out on the data 
from the entire trial, this could significantly increase the 
quantity of data available for analysis, boosting SNR, 
especially as the number and quantity of EEG recordings 
increases.

A search for better models for canine EEG
We observed in the reviewed studies a shift in focus 
from explanatory models to prediction models, a distinc-
tion articulated by Yarkoni and Westfall in their 2017 
paper [104]. The distinction is raised with the pertinent 
criticism that psychology often prioritizes explana-
tory models, which are prone to overfitting and rarely 
tested for out-of-sample accuracy. They further argue 
that this emphasis on explanatory models has contrib-
uted significantly to the replication crisis in psychology, 
as these models often fail to generalize to different data 
sets. In contrast, a predictive approach aims to construct 
models that can effectively predict out-of-sample data 
by leveraging established machine learning techniques 
such as leave one-out cross-validation [104, 105]. This 
shift toward prediction models offers a promising direc-
tion for improving the robustness and generalizability of 
canine EEG research.

A particular pitfall to be addressed, is the observed 
limitation in some reviewed studies, where multiple com-
parisons went uncorrected or under-corrected. As the 
nature of EEG studies involves many degrees of freedom, 
including multiple channel locations, time windows, and 
subjects, spurious significance values are likely. Some 
studies attempted to adjust for this using methods such 
as the Bonferroni correction, which involves adjust-
ing the α value by the number of hypotheses (m) by the 
following formulae - actual alpha = desired α/m. How-
ever, some studies omitted to consider the true range 
of hypotheses being tested, e.g. not considering time-
window choice as a relevant hypothesis. This lack of 
adequate correction for multiple comparisons, coupled 
with the relatively small sample size of studies raises seri-
ous questions of replicability. It is worth pointing out, 
however, that correcting for multiple comparisons is 
a complex subject, and researchers in other domains 
have argued that it might not always be necessary 
[106] or valuable to do so [107].

One challenge with the use of predictive models is the 
need for large amounts of data to train models [108]. 
One tractable approach could be to combine a predictive 
model framework with an individual level analysis. That 
is, large amounts of EEG data can be collected from a 
few dogs for a specific task, and machine learning models 
can be trained on data from these individual dogs. Com-
paring the performance of such models across dogs and 
tasks, as well as correlation between model performance 

with other behavioral and cognitive traits should provide 
insight on questions of canine cognition, whilst provid-
ing an alternative model to solve the problem of multiple 
comparisons.

Conclusion
The rise of non-invasive canine EEG can be traced to 
lying at the intersection of three trends - the increasing 
maturity of cognitive neuroscience, the rejuvenation of 
canine science, and the increasing sophistication in port-
able and accessible neuroimaging methods. The latter is 
primarily due to the increasing interest in brain-com-
puter interfaces (BCIs) [109]. We may be at the cusp of 
the emerging field of canine brain-computer interfaces, 
where wearable and non-invasive systems could allow 
dogs to interact with objects, their environment, and 
humans through cognitive processes alone. Such systems 
could be beneficial to researchers in the field of canine 
science, as it extends the field of possibilities in experi-
mental design, as well as potentially reducing the time 
needed for operant training. The development of canine 
BCIs would be benefited by the framings of the field of 
Animal-Computer Interaction (ACI), which works to 
design technologies for non-human users using a devel-
opment model which incorporates iterative prototyping, 
animal welfare as a central value, and a direct involve-
ment of animal experts at all stages of the development 
process [110].

It would be vital to remember that neuroscience needs 
behavior [111], and that further work with canine EEG 
continues to incorporate behavioral measures alongside 
neural data. One useful approach could be the lens of 
embodied and 4E cognition, where cognition is seen to 
extend beyond the confines of the brain [112, 113]. An 
embodied approach to canine EEG would emphasize 
embodied data, such as from wearable heart and respi-
ration sensors, as well as acknowledge the influence of 
the environment, as well as human and con-specifics, on 
neural patterns.

In conclusion, the utility of non-invasive EEG encom-
passes the diverse and expansive roles that dogs have 
come to occupy in our societies, providing a portable, 
accessible, and ethical method to derive quantitative 
data on canine cognition. Non-invasive EEG can lead to 
insights on the shared neurological conditions as well as 
cognitive processes in humans and canines, and provide 
a data-driven amplifier to the training and deployment of 
working dogs.
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