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Abstract 

Background Bovine mastitis is an important health problem in dairy cattle which affects the quality and yield of milk 
and causes significant economic losses in the dairy industry. Streptococcus agalactiae is a Gram-positive and zoonotic 
bacterium that causes clinical and subclinical contagious bovine mastitis. The main strategy for the control of this 
pathogen in dairy herds is the antimicrobial therapy. The aim of this study was to determine the genetic diversity of S. 
agalactiae using Multiple Locus Variable number tandem repeat -VNTR- Analysis (MLVA), serotypes, virulence factors 
(VF) and antimicrobial resistance (AMR) profiles and to compare the discrimination power of these different methods 
in strains isolated from cattle with mastitis in Argentinian dairy farms.

Results Eighty-seven S. agalactiae isolates obtained from dairy cattle with mastitis in Argentina were analyzed. The 
detected serotypes were III, II and Ia. The most frequent virulence and AMR detected genes were cpsA, hylB, PI-2b, 
cylE, rib, spb1, and tetO and ermB respectively. A total of 36 VF + AMR profiles were detected with a discriminatory 
power of the method of Ds = 0.96. The MLVA based on six VNTRs showed 29 profiles with a Ds = 0.90. The analysis 
of VF + AMR + MLVA data together showed 59 profiles with an increased discriminatory power (Ds = 0.98).

Conclusion This study highlights that the MLVA is recommended to add to other methodologies in order to study 
epidemiological relationships in this species Although within each dairy farm there was a predominance of certain 
serotypes/virulence profiles, the characteristics did not show total homogeneity, as expected due to the conta-
gious nature of the pathogen. This suggests the incorporation of animals from other herds at some point, a practice 
not uncommon among dairy farms in Argentina. By other hand, the detection of a same clone in the same farm in dif-
ferent periods confirms that S. agalactiae strains can persist on dairy farms for a long time.
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Background
Bovine mastitis is an important health problem in dairy 
cattle which affects the quality and yield of milk [1]. Some 
of the major etiological species belong to the genus Strep-
tococcus, where S. agalactiae and S. uberis, can be distin-
guished as contagious and environmental, respectively. 
Another pathogen related to mastitis of environmental 
origin is Escherichia coli [2].

S. agalactiae, a Gram-positive bacterium, causes clini-
cal and subclinical contagious bovine mastitis. It can sur-
vive inside the mammary gland for a long time and, at 
present, it has been demonstrated that the bacteria can 
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survive in extramammary sources [3]. Also, there is evi-
dence that suggests interspecific transmission from cattle 
to humans and vice-versa and, therefore, it is considered 
a zoonotic pathogen [4].

The main strategy for the control of S. agalactiae in 
dairy herds infections is the antimicrobial therapy. Peni-
cillin is the first option used for the prevention and treat-
ment of S. agalactiae infections, however reports of 
reduced susceptibility to penicillin have been published 
[5, 6]. Alternative antibiotics such as macrolides and 
lincosamides are used, but increased resistance to them 
has been documented worldwide [7]. Also, isolates with 
reduced penicillin susceptibility, tend to be resistant 
to other antibiotics such as fluoroquinolones and mac-
rolides, and exhibit multidrug-resistance [8]. Antimicro-
bial resistance is an area of concern in both human and 
veterinary medicine [9]. Strain characterization and sur-
veillance are important to obtain information that allows 
evaluating the level and evolution of antimicrobial resist-
ance [10]. Some of the antimicrobial resistance genes 
detected in S. agalactiae are erm, lnuB, tet, and aphA3/
aad6, involved in resistance to macrolides, lincosamides, 
tetracyclines and aminoglycosides [11, 12].

Virulence factors contribute to the pathogenesis infec-
tion of S. agalactiae, allowing the colonization and inva-
sion of epithelial barriers, immune system evasion and 
persistence in host tissues [13]. Among the virulence 
factors that have been detected in bovine isolates are the 
capsular polysaccharide, encoded by cpsA, cell surface 
proteins mediating adherence and invasion such as C5a 
peptidase, encoded by scpB, α-C protein (bca), β-C pro-
tein (bac), Rib (rib) and laminin binding protein (lmb) 
[14]. Extracellular toxins and enzymes capable of forming 
pores have been described, such as that encoded by the 
cylE gene [15–18]. The product of gene hylB, a secreted 
hyaluronate lyase, can hydrolyze hyaluronan polymers, 
suggesting that this enzyme can facilitate the spread of 
bacteria during infection [15]. Other surface structures, 
such as pili, are also crucial virulence factors that pro-
mote the adherence and attachment of S. agalactiae to 
host cells. Pili are encoded by two loci in different regions 
of the genome designated PI-1 and PI-2, with the latter 
presenting two distinct variants, PI-2a and PI-2b [19].

CPS is the primary virulence determinant which 
confers anti-phagocytic properties and plays a piv-
otal role in evading host defense mechanisms [20]. Dif-
ferences in CPS allow to distinguish S. agalactiae into 
10 different serotypes (Ia, Ib, II, III, IV, V, VI, VII, VIII, 
IX) [21–23], but this classification does not have the 
enough differentiating power to discriminate between 
isolates [24]. Genetic diversity and clonal relatedness of 
S. agalactiae strains from human and animal infections 
have been previously demonstrated by pulsed-field gel 

electrophoresis (PFGE) [25]. Other efficient subtyping 
methods like Multiple Locus Variable number tandem 
repeat-VNTR- Analysis (MLVA) are faster and with 
greater resolution power [24, 26, 27], and it has been 
extensively used for genotyping isolates of various bacte-
rial species [28]. The MLVA identifies a variable number 
of tandem repeat (VNTR) in several loci. The VNTRs loci 
are dispersed throughout the bacterial genomes and they 
comprise short nucleotide sequences, called Repeat Units 
(RU) which can differ in the number of copies inside the 
tandem at each locus.

The objective of this study was to determine the genetic 
diversity of S. agalactiae strains isolated from dairy cat-
tle with mastitis in Argentina using different methods: 
MLVA, data on serotype, virulence and antimicrobial 
resistance profile, in combination or separately to com-
pare their discrimination power.

Results
Eighty-seven S. agalactiae isolates obtained from dairy 
farms located in one of the largest milk-producing 
regions of Argentina, were molecularly characterized. 
The isolates belonged to serotypes III (63.2%), II (26.4%), 
and Ia (5.8%), while the remaining 4.6% were not typeable 
(NT). The most frequently detected virulence genes were 
cpsA and hylB (100% of the isolates), followed for the 
pilus gene PI-2b (93%) and cylE (89%). PI-2b was absent 
only in six isolates (B69, B81; B86, B89; B95; B97) mean-
while the genes bac, lmb, scpB, hvgA and the pili PI-1 /
PI-2a were not detected in any isolates. In relation to 
antimicrobial resistance genes, tetO and ermB were the 
most frequently detected genes (64% and 54%, respec-
tively) meanwhile tetM and lnuB, the less frequent ones 
(Table 1). 

Taking into account the virulence factors (VF) and 
antimicrobial resistance (AMR) genes, 36 genetic pro-
files were identified, with 18 clusters grouping two to 
eleven isolates and 18 singletons (Fig. 1). The Simpson´s 
diversity indices for the VF and VF + AMR analyses were 
 DS = 0.85 and  DS = 0.96, respectively.

The MLVA genotype was expressed as an allelic string 
profile: SAG2, SAG3, SAG4, SAG7, SAG21, SAG22. The 
number of alleles detected per locus varied between 2 
(SAG21) and 5 (SAG4), with the SAG4 and SAG22 mark-
ers showing the highest Nei´s diversity indices  (DN = 0.74 
and 0.73, respectively) (Table  2; Fig.  2). The UPGMA 
clustering MLVA analysis revealed 29 different geno-
types, which were distributed in 14 clusters with two to 
22 isolates and 15 singletons (Fig.  3). The Simpson´s 
diversity index for the MLVA was  DS = 0.90. Dairy farm 
A, represented with 28 isolates, collected between 2017 
and 2018, showed the greatest diversity of MLVA pro-
files (11) followed by farm B, with 7 MLVA profiles which 
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grouped 11 isolates collected during 2016–2018. Seven 
MLVA profiles were detected in isolates from different 
dairy farms. On the other hand, two profiles grouped iso-
lates from the same farm (J) with different virulence pro-
files (Fig. 3).

Table  3 shows the discrimination power of the dif-
ferent methods applied to study genetic diversity in S. 
agalactiae isolates. The greatest power of discrimina-
tion is achieved by analyzing all the characters together 
 (DS = 0.98).

Table 4 summarizes the genetic diversity of each dairy 
farm evidenced by their VF, AMR and MLVA profiles. 
Taking into account genetic information of VF, AMR and 
MLVA data, 59 genetic profiles were detected. The den-
drogram presented two principal branches, one of which 
was integrated only by strains from dairy farm J, of which 
all, with the exception of one, harbored the aminoglyco-
side resistance gene aad6 (Fig. 4).

For the correlation analysis between MLVA pro-
files and virulence/ resistance genes, the correlations 
between the MLVA A (2, 2, 0, 2, 3, 4), MLVA B (2, 1, 1, 
0, 2, 3), and MLVA C (1, 2, 2, 2, 2, 2) and the presence/ 
absence of bca, rib, spb1, cylE, PI-2b, ermB, tetM, tetO, 
lnuB, aad6, aphA3 were analyzed. MLVA A exhibited 
statistically significant correlations with aad6 (r = 0.95, 
p < 0.0001), a moderate positive correlation with ermB 
(r = 0.56, p = 0.00012), rib (r = 0.47, p = 0.0017), and tet 
O (r = 0.39, p = 0.011) and a strong negative correlation 
with spb1 (r = -1.00, p < 0.0001). MLVA B was significantly 
correlated with spb1 (r = 0.66, p = 0.0000017) and aad6 
(r = -0.63, p = 0.000007), meanwhile a negative correla-
tion was observed with ermB (r = -0.88, p < 0.0001) and 
tetO (r = -0.63, p = 0.0000069). MLVA C showed positive 
significant correlations with spb1 (r = 0.51, p = 0.00058), 
and ermB (r = 0.31, p = 0.048) and a strong negative cor-
relation with rib (r = -0.92, p < 0.0001).

Also, a correlation analysis was conducted between 
dairy farms A, B, D, G, J and genetic markers of virulence 
and resistance. Dairy farm A exhibited a positive corre-
lation with spb1 (r = 0.52, p < 0.0001) and a negative cor-
relation with ermB (r = -0.51, p < 0.0001). Additionally, 
significant negative correlations were found with bca, 
tetO, and aad6, and positive correlation, with cylE. In 
relation to dairy farm B, a negative correlation was found 
with rib (r = -0.42, p < 0.0001). In addition, weak posi-
tive correlations were observed with lnuB, tetO, ermB 
and spb1. Dairy farm D showed a negative correlation 
with rib (r = -0.55, p < 0.0001), and a positive correlation 
with bca (r = 0.54, p < 0.0001), meanwhile, dairy farm G 
showed moderate positive correlation with bca (r = 0.45, 
p < 0.0001), tetM (r = 0.32, p < 0.01), and aphA3 (r = 0.35, 
p < 0.01). Finally, dairy farm J was the one that showed 
outstanding correlations. It was strongly and negatively 
correlated with spb1 (r = -0.97, p < 0.0001) and positively, 
with aad6 (r = 0,81, p < 0.0001). In addition, significant 
negative correlation was detected with cylE (r = -0.51, 
p < 0.0001) and positive, with ermB (r = 0.59) and, tetO 
(r = 0.46).

Discussion
In this study, we described the genetic diversity in rela-
tion to virulence, antimicrobial resistance and multi locus 
VNTR analysis (MLVA) of S. agalactiae recovered from 
cows with mastitis in Argentina. MLVA, a typing method 
based on tandem repeat polymorphisms at multiple loci, 
has been successfully applied to many other bacterial 
species and, recently, to study human isolates of this spe-
cies [7, 30]. We investigated the relevance of this tool for 
genotyping bovine isolates of S. agalactiae and compared 
it with methods that use other genetic characters.

An important genetic diversity among the bovine iso-
lates of S. agalactiae obtained from different dairy farms 

Table 1 Virulence and antimicrobial resistance genes frequencies in Argentinian bovine S. agalactiae isolates. N: number of isolates

Dairy farms (N) Virulence factor genes (N) Antimicrobial resistance genes (N)

bca rib spb1 hylB cylE PI-2b cpsA ermB tetM tetO lnuB aad6 aphA3

Farm A (N = 28) 0,071 (2) 0,89 (25) 1 (28) 1 (28) 1 (28) 1 (28) 1 (28) 0,25 (7) 0 0,5 (14) 0,036 (1) 0 0,25 (7)

Farm B (N = 11) 0,09 (1) 0,27 (3) 1 (11) 1 (11) 1 (11) 1 (11) 1 (11) 1 (11) 0 1 (11) 0,18 (2) 0 0,27 (3)

Farm C (N = 2) 0,5 (1) 0 0,5 (1) 1 (2) 1 (2) 0,5 (1) 1 (2) 0 0,5 (1) 0,5 (1) 0 0 0,5 (1)

Farm D (N = 7) 1 (7) 0 1 (7) 1 (7) 1 (7) 1 (7) 1 (7) 0 0,143 (1) 0,143 (1) 0 0 0,143 (1)

Farm E (N = 3) 1 (3) 0 1 (3) 1 (3) 1 (3) 1 (3) 1 (3) 0 0 0 0 0 0

Farm G (N = 5) 1 (5) 1 (5) 1 (5) 1 (5) 1 (5) 1 (5) 1 (5) 0 0,4 (2) 0 0 0 1 (5)

Farm H (N = 1) 1 (1) 0 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 0 0 0 0 0 0

Farm I (N = 2) 0,5 (1) 1 (2) 0,5 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 0 1 (2) 0 0 0,5 (1)

Farm J (N = 28) 0,18 (5) 0,96 (27) 0,036 (1) 1 (28) 0,64 (18) 0,82 (23) 1 (28) 0,96 (27) 0,11 (3) 0,96 (27) 0 0,75 (21) 0,43 (12)

Total (N = 87) 0,3 (26) 0,71 (62) 0,67 (58) 1 (87) 0,88 (77) 0,93 (81) 1 (87) 0,54 (47) 0,08 (7) 0,64 (56) 0,03 (3) 0,24 (21) 0,34 (30)
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Fig. 1 Cluster analysis of S. agalactiae isolated from dairy cattle with mastitis in Argentina based on virulence and AMR profiles. The presence (black) 
or absence (white) of genes, the isolate name, dairy farm, isolation year, and serotype of the isolates are shown. NT: non-typeable. Genes not found 
in any of the studied isolates: bac, lmb, hvgA, PI-1, PI-2a, and scpB 
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in Argentina, as well as the presence of different clones 
within one of the dairy farms included in this study, were 
detected by MLVA. We could identify 29 distinct MLVA 
profiles with a Simpson´s diversity index  (DS) of 0.90 
among the 87 bovine mastitis isolates analysed. Other 
authors, who applied MLVA to study human S. agalac-
tiae strains, obtained  DS values from 0.84 to 0.88 [13, 
27, 30]. Interestingly, Haguenoer et  al. [24] calculated 
a  DS value of 0.96 in an analysis that included human 
and bovine strains. These data could be indicating that 
bovine isolates are more diverse in relation to VNTR loci 
than human ones. On the other hand, several virulence 
and antimicrobial susceptibility profiles associated with 
S. agalactiae intramammary infections were detected. 
According to our results and comparing them with pre-
vious works in which MLVA was applied [7, 27, 30], it 
can state that this methodology shows a satisfactory 
discriminatory power in order to genotype S. agalactiae 

isolates. Most shared MLVA profiles were presented by 
isolates from the same dairy farm, with the exception of 
isolates from farms A and B which shared profiles and 
one isolates from farm I which was included among farm 
J isolates. In the first case, it is known that there was an 
exchange of cattle between both dairy farms (A and B).

The complement of the MLVA data with data from 
genetic profiles of virulence and AMR increased the dis-
crimination power  (DS: 0.98 versus 0.90). Our results 
show that, therefore, MLVA, is recommended to add to 
other methodologies in order to study epidemiological 
relationships between S. agalactiae strains. On the other 
hand, correlation analysis suggests that the presence or 
absence of specific genes could be related to different 
MLVA profiles and/or sources (dairy farms).

Not all farms in this study had a specific MLVA pro-
file, in agreement with other authors, who also found the 
presence of profiles unique to some dairy farms, differ-
ent profiles within the same farm, and profiles shared by 
isolates from farms located in different regions, obtained 
at different times [27]. Dairy farms in Argentina tend, at 
times, to produce movements with the cattle due to the 
sale/trade of milking cows. Transmission of S. agalactiae 
is therefore likely between farms. On farms with multi-
ple samples (A, B, J), strains with identical or single locus 
variant profiles were found over a period of several years, 
indicating subclinical infection. On the other hand, sev-
eral profiles were detected intra-farm supporting the 
occurrence of different clones (farms A, B, D, J).

The most prevalent serotypes detected among bovine 
S. agalactiae were III (63%) and II (26%), followed by Ia 
(6%). The most frequently detected virulence genes were 

Table 2 VNTR loci characterization

a null alleles were taken into account
b Nei´s diversity index, calculated by  DN = 1-Σ(fra)2, where fra is the allelic 
frequency)

VNTR loci Repeat Unit (RU) 
size (bp)

Number of observed 
 allelesa

DN
b

SAG2 32 3 0.29

SAG3 24 3 0.53

SAG4 60 5 0.74

SAG7 18 3 0.49

SAG21 48 2 0.46

SAG22 159 5 0.73

Fig. 2 VNTR allelic frequencies distibution per locus in the analysed Argentinian bovine S. agalactiae isolates. Alleles are indicated in colours: nule: 
green, 1: light blue, 2: yellow, 3: dark green, and 4: blue
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Fig. 3 Cluster analysis of S. agalactiae isolated from dairy cattle with mastitis in Argentina based on MLVA profiles. MLVA profiles which were 
included in correlation analysis are colored: MLVA A: blue, MLVA B: green, and MLVA C: purple
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cpsA and hlyB (100% of the isolates), followed for the 
pilus gene PI-2b (93%) and cylE (89%). The PI-2b pilus 
variant is associated with bovine isolates [31] and, in this 
study was absent only in six isolates (B69, B81; B86, B89; 
B95; B97) meanwhile cylE which encodes a β-hemolysin 
which causes tissue damage and the systemic spread of 
the bacteria  and is involved in the recruitment of cyto-
toxic and pro-inflammatory cytokines [17] was absent 
in ten isolates. Particularly, all the negative- PI-2b- cylE 
isolates were from the same dairy farm (J). On the other 
hand, genes bac, lmb, scpB, hvgA, and the pili PI-1/ PI-2a 
were not detected in any isolates. These results agree 
with those of other authors, who described some of 
these genes as typical of human isolates [32, 33]. How-
ever, in relation to scpB, more recently Parasana et al. [34] 
detected it in S. agalactiae milk isolates.

In Argentinian dairy farms, to treat mastitis via the 
intramammary route, the groups of antibiotics most used 
are beta-lactams, macrolides and aminoglycosides, while 
tetracyclines (together with sulphonamides and qui-
nolones) are administered, mainly, systemically, to other 
infections [35, 36]. The presence of genetic determinants 
of AMR was heterogeneous among the nine dairy farms. 
Isolates from D and E farms present only one AMR gene 
of the six analyzed and, on the contrary, the isolates from 
farm J, up to five AMR genes were detected. Regarding 

the ermB gene, encoding cross-resistance between mac-
rolides and lincosamides (erythromycin and clindamy-
cin-pirlimycin), it was detected in more than 50% of the 
bovine isolates meanwhile lnuB, which confers resistance 
exclusively to lincosamides, only in three isolates (farms 
A and B). The high level of kanamycin resistance detected 
by our group in previous studies [37, 38] can be explained 
by the aphA3 presence. This gene encodes a phospho-
transferase that confers resistance to kanamycin and 
mediates synergism with beta-lactams [39]. On the other 
hand, a group of isolates from farm J harbored aad6, an 
aminoglycoside acetyltransferase encoding-gene, which 
also eliminates the synergism between cell wall–active 
antimicrobials and aminoglycosides [39]. Studies carried 
out in Brazil did not detect  aphA3 or  aad6  [40]. How-
ever, other ones carried out in France [41] described the 
presence of aphA3 as responsible for high levels of resist-
ance to kanamycin and, of aad6, as responsible for across 
resistance to kanamycin and streptomycin and, in a study 
from China [42], this gene was associated with gen-
tamicin and amikacin resistance.

Tetracycline resistance is explained mostly by the pres-
ence of ribosome protection gene  tetO  and tetM.  The 
gene tetO is the most common gene in bovine S. agalac-
tiae strains [43, 44]. Only in few isolates both tetracycline 
resistance determinants were detected in combination 
(B41, B83, B84, B81). The majority of tet genes are asso-
ciated with mobile genetic elements (MGE) [45, 46]. On 
the other hand, MGE in which tetracycline resistance 
genes are present, also contain AMR determinants of 
aminoglycosides, macrolides and lincosamides [44, 47–
49]. In our study, the presence of ermB/tetO, macrolide/
tetracycline resistance genes among isolates considered 
unrelated (assessed by MLVA) suggests a possible hori-
zontal transfer of these genes.

Regarding the complementation of MLVA with viru-
lence and AMR genetic profiles data, correlation analysis 
showed different associations between specific genes and 

Table 3 Comparison of the discrimination power of the different 
methods applied to study Argentinian bovine S. agalactiae 
isolates

a Simpson´s diversity index, calculated according to Hunter and Gaston [29]

Method Number of 
profiles

DS
a

VF profiles analysis 11 0.85

VF and AMR profiles analysis 36 0.96

MLVA 29 0.90

VF and AMR profiles analysis + MLVA 59 0.98

Table 4 Genetic diversity of S. agalactiae population of each dairy farm assessed on number of serotypes and genotypes detected

Dairy farm Number of isolates Serotypes VF profiles AMR profiles MLVA profiles

A 28 III (20), II (6), Ia (1), NT (1) 3 7 11

B 11 II (8), Ia (1), III (1), NT (1) 3 4 7

C 2 Ia, III 2 2 2

D 7 II 1 4 3

E 3 II, NT (1) 1 1 3

G 5 III 1 2 3

H 1 Ia 1 1 1

I 2 III, NT 2 2 2

J 28 III, Ia (1) 7 6 4
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Fig. 4 Cluster analysis of S. agalactiae isolated from dairy cattle with mastitis in Argentina based on virulence factors, AMR and MLVA genotypes. 
Some clades made up of isolates from the same dairy farm are colored
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dairy farms. In particular, dairy farm A was correlated 
with spb1 presence, farm D, with the presence of bca and 
the absence of rib, and farm J, very noticeably, with the 
presence of aad6 and the absence of spb1, added to the 
presence of ermB and tetO, and the absence of cylE.

Conclusions
This study highlights that MLVA is recommended to add 
to other methodologies in order to study epidemiologi-
cal relationships in S. agalactiae. Bovine mastitis caused 
by this pathogen is responsible for one of the main types 
of contagious mastitis in dairy farms. The infected cow is 
the primary source of infection within the herd and the 
infection typically spreads from cow to cow during milk-
ing. Although in this study within each dairy farm there 
was a predominance of certain serotypes/virulence pro-
files, the characteristics did not show total homogeneity, 
as expected due to the contagious nature of the pathogen. 
This suggests the incorporation of animals from other 
herds at some point, a practice not uncommon among 
dairy farms in Argentina. By other hand, the detection 
of a same clone in different samples carried out in the 
same farm in different periods confirms that S. agalactiae 
strains can persist on dairy farms for a long time, more 
than a year in this study, 2–12 months according to Wat-
aradee et al. [50]. On the other hand, correlation analy-
ses suggest that the presence or absence of specific genes 
could be related to different MLVA profiles and/or dairy 
farms. This information could lead to better control and 
prevention strategies in the dairy sector in Argentina.

Methods
S. agalactiae isolates
A total of 87 S. agalactiae isolates collected between 2016 
and 2022, from nine dairy farms (A-G, I, J) located in 
the Cuenca Mar y Sierras, Argentina, were studied. They 
were obtained from milk of cows presenting clinical or 
subclinical mastitis. Isolates were stored at − 80 °C.

Molecular confirmation of species and serotype, virulence 
factors (VF) and resistance antimicrobial (AMR) genes 
identification
Fifty-six isolates had been previously analyzed by Poly-
merase Chain Reaction (PCR) for molecular confir-
mation of species and serotype, virulence factors and 
antibiotic resistance genes identification [37] and, using 
the same PCR conditions, 31 isolates (B69-B100) were 
analyzed in this study. Briefly, the DNA were obtained by 
boiling bacterial colonies suspended in sterile water for 
10 min. The species was confirmed by amplifying the dltR 
gene [51] and the serotype assigned by a multiplex PCR 
(capsular types Ia, Ib, II-IX) according to Imperi et  al. 
[52]. A total of ten virulence genes: bac, bca, rib, spb1 

[53], cpsA, scpB [54], cylE, hylB [13], hvgA [51], lmb [44], 
plus three pili genes PI-1, PI 2a, and PI-2b [55] were iden-
tified according to the reference conditions. The antibi-
otic resistance genotype was performed amplifying some 
genes representatives of important groups in which phe-
notypic antimicrobial resistance was detected: the mac-
rolide resistance gene ermB [56], tetracycline resistance 
genes tetM and, tetO [57], lincosamide resistance gene 
lnuB [12] and, aminoglycosides resistance genes aphA3 
and aad6 [41]. PCR products were plated on 2% agarose 
gels containing 1  μg/ml ethidium bromide, run by elec-
trophoresis for 30  min at 100  V and, visualized using a 
UV transilluminator.

Multiple locus VNTR analysis (MLVA)
Six loci VNTR, specific for S. agalactiae, were amplified 
with the primers described by Haguenouer et al. [24] for 
the 87 isolates. The PCR were carried out in two multi-
plex reactions, RI: SAG2, SAG4 and SAG21, and RII: 
SAG3, SAG7 and SAG22. Each PCR was performed in 
a final volume of 25 μl containing: 10 ng of DNA, 2 mM 
 MgCl2 (InBio Highway, Argentina), 200  μM of each 
dNTP (InBio Highway, Argentina), 1 × Taq DNA poly-
merase Buffer (InBio Highway, Argentina), 1 U Taq DNA 
polymerase and 5 pmol of each primer (Genbiotech SRL, 
Argentina). Amplification was performed under the fol-
lowing conditions: initial denaturation for 5 min at 94 °C, 
followed by 30 cycles of denaturation for 1 min at 94 °C, 
annealing for 1  min at 50  °C and elongation for 60  s at 
72  °C plus a final elongation step for 10  min at 72  °C. 
PCR products were plated on 2% agarose gels contain-
ing 1 μg/ml ethidium bromide, run by electrophoresis for 
30 min at 100 V and, visualized using a UV transillumi-
nator. Allelic number names corresponded to different 
amplimer sizes (not to the exact number of repetitions). 
Absence of amplification product was considered null 
allele and it was designed with the number 0. Allelic 
variants identified for each VNTR were sequenced (Mac-
rogen, Inc., Korea) and used as a reference size in the 
electrophoresis runs. The MLVA genotype of each strain 
were expressed as an allelic profile string: SAG2, SAG3, 
SAG4, SAG7, SAG21, SAG22. Each allelic profile was 
classified as a distinctive MLVA type (MT).

Diversity analysis
Nei´s diversity index  (DN) was calculated for each 
locus using the formula  DN = 1- ∑(fra)2, where  fra is the 
allelic frequency [58]. Clustering analysis (UPGMA 
-unweighted pair-group method with arithmetic mean- 
based on categorical coefficient and binary data for 
MLVA and virulence/RAM profiles, respectively), were 
constructed using BioNumerics, vs 6.6 (Applied Maths, 
Belgium). The discrimination power of each subtyping 
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method separately and combined was assessed using the 
Simpson diversity index  (DS) [29].

Correlation analysis
Data analysis to calculate the Pearson correlation coef-
ficients and the corresponding p-values using Python 
packages Scipy (1.9.3). A p-value of less than 0.05 was 
considered statistically significant, indicating a meaning-
ful association between the variables. Only those MLVA 
profiles (A, B, C) and dairy farms (A, B, D, G, J) that pre-
sented a frequency greater than 5 were considered for the 
analysis.
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