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Abstract 

Background  As bacterial infections pose a major health risk to captive populations, disease prevention and manage-
ment play a crucial role in the ex situ conservation of giraffes (Giraffa camelopardalis). This study describes the case 
of a giraffe that developed septicemia after an umbilical cord infection caused by Escherichia coli. To our knowledge, 
pathological changes in diseased giraffes caused by E. coli, which is an opportunistic pathogenic organism, have 
not been reported. This is the first report presenting an analysis of necropsies and subsequent microbiological 
investigations.

Case presentation  The baby giraffe’s mother died shortly after birth, so it had to be fed milk powder. The giraffe 
was healthy at first but developed symptoms like depression, loss of appetite, and lameness at 8 days old. At 14 days 
of age, the juvenile giraffe showed astasia and gradually died, with a disease course of 7 days. Postmortem exami-
nation revealed opisthotonus and navel swelling. Serofibrinous arthritis, serofibrinous necrotizing inflammation 
of periarticular soft tissue, serous omphalitis, and severe adventitia hemorrhage of the umbilical artery were observed. 
Severe serofibrinous pericarditis, pleuritis, and peritonitis were also observed. The interstitium of the pulmonary lobule 
widened because it was filled with a pale yellow translucent gelatinous exudate. Histopathologically, the calf had 
diffuse serous interstitial pneumonia, serous necrotizing umbilical arteritis, degenerative hepatitis with mild fibrosis, 
degenerative nephritis, hemorrhagic lymphadenitis, necrotizing enteritis, and necrotizing thyroiditis. Blue-stained 
clumps of bacteria of varying sizes and neutrophil infiltration were scattered or diffused in the interstitial connective 
tissue and edematous serosa of all tissues and organs, as well as in small vessels and lymphatic vessels, which were 
filled with many neutrophils (lymphatic spread). Single gram-negative Escherichia coli were cultured from all tissues 
of the animal. Polymerase chain reaction results of 16S rRNA of the isolated Escherichia coli had 99.79% homology 
to KJB03889.1.

Conclusions  The gross, histopathologic, microscopic, and polymerase chain reaction sequencing features reported 
in a juvenile giraffe were consistent with colibacillosis, which is a rare disease of giraffes. The gross, histopatho-
logic, microscopic, and polymerase chain reaction sequencing features reported in a juvenile giraffe. This case 
serves as a paradigmatic illustration of a giraffe suffering from neglect and inadequate treatment, leading to severe 
consequences. In instances of giraffe Escherichia coli septicemia, it is imperative to thoroughly assess for underly-
ing diseases, particularly in the absence of obvious predisposing factors. The rise of multidrug resistant organisms 

†Yufei Zhang and Wenrui Guo have contributed equally to this work.

*Correspondence:
Jinling Wang
wangjinlin-721@163.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12917-025-04606-1&domain=pdf


Page 2 of 10Zhang et al. BMC Veterinary Research          (2025) 21:109 

has constrained the efficacy of empirical antibiotic treatment, highlighting the importance of promptly conducting 
culture and sensitivity testing and employing antibiotic therapy guided by susceptibility results.
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Background
Escherichia coli (E. coli) is the one of prevalent gram-
negative species. The following three broad categories 
of E. coli strains are of biological significance to mam-
mals: commensal, intestinal pathogenic (InPEC), and 
extraintestinal pathogenic (ExPEC) [1, 2]. Although E. 
coli is a benign commensal colonizing the mammalian 
intestine, some strains or pathotypes can cause a vari-
ety of intestinal and diarrheal disorders [3]. For example, 
a minimum of the following six pathotypes have been 
described: enterohemorrhagic, enteropathogenic, enter-
otoxigenic, enteroaggregative, diffusely adherent, and 
enteroinvasive E. coli, respectively [3]. Moreover, ExPEC 
can cause diseases such as urinary tract infections, bac-
teremia, septicemia, and meningitis [3–6]. It is unclear 
how E. coli genetic diversity, virulence, and antimicrobial 
resistance affect biodiversity and wild animal conserva-
tion [7]. Wild animals may get exposed to antimicrobial 
compounds and antimicrobial resistance bacteria by 
interaction with anthropogenic sources such as human 
waste (garbage and sewage) and polluted waterways [8–
10], livestock activities [11, 12], or predation on impacted 
prey, including livestock corpses [13, 14].

Giraffes (Giraffa camelopardalis) are the tallest liv-
ing animals and are kept in many zoos worldwide. 
Despite the passionate interest in keeping captive giraffes 
healthy, the health management of the giraffe presents 
a significant challenge. Despite being routinely bred in 
zoos, giraffes continue to provide a problem, particu-
larly when it comes to food. Because of the high risk of 
maternal rejection and death among both mother-reared 
and hand-reared calves [15, 16]. Although success rates 
have increased over time, intensive care therapy of com-
promised calves remains under documented [15]. There 
are still no definitive feeding standards, predicted weight 
increase, or suggestions for veterinarian assistance. In 
addition, little research has been conducted on diseases 
affecting giraffes, which are primarily associated with 
its hoofs and musculoskeletal system [17, 18]. However, 
there are few reports of E. coli disease in young giraffes.

ExPEC infections are a serious threat to public health 
worldwide [19, 20]. Urinary tract infections, severe new-
born meningitis, major intra-abdominal infections, and, 
less frequently, pneumonia, intravascular device infec-
tions, osteomyelitis, soft tissue infections, or bactere-
mia are the most troublesome illnesses. Bacteremia can 
result in sepsis, which is defined as life-threatening organ 

dysfunction caused by an unregulated immune response 
to infection [5]. In this study, we describe the case of a 
giraffe that developed septicemia after an umbilical cord 
infection caused by E. coli. This case study may serve as a 
valuable reference and caution for veterinarians in zoos.

Case presentation
Clinical history
A female giraffe’s mother died of severe trauma approxi-
mately 5 h after delivery; hence, the juvenile giraffe could 
not feed colostrum and had to be artificially adminis-
tered milk powder (Holstein milk + 10% colostrum). The 
juvenile giraffe was able to stand on its own 3 days after 
birth and was in a good condition. However, on the eight 
day after birth, the juvenile giraffe began to show clini-
cal signs of losing appetite, slow walking, and depression. 
Lactasin (LactaidⓇ, Johnson & Johnson Inc., Guelp, 
Canada; Take 3 caplets with their bite of daily food.) was 
administered orally twice a day for 4  days during the 
course of the disease, and the treatment was ineffective. 
On the 12th day after birth, the juvenile giraffe showed 
anorexia, tarsal joint swelling of the right hind limb, clau-
dication, unwillingness to move, the presence of a small 
amount of dirty yellow loose stool around the anus, and 
eventually lying down, and died on the 14th day after 
birth.

Necropsy
A postmortem examination was performed within 2  h 
of the animal’s death. According to the naked eye obser-
vation, dark, red, and swollen umbilicus (Fig.  1A); and 
a small amount of dirty yellow sticky feces on the peri-
anal coat. Serofibrinous arthritis and periarticular serous 
necrotizing inflammation: the swollen hock joint of the 
hind limb and the subcutaneous tissue near it was light 
yellow gelatinous material due to inflammatory edema, 
and the local skin is attached to the subcutaneous tissue 
and muscle (Fig. 1B). A cystic necrotic focus was formed 
at the adhesion site, with a red inflammatory response 
zone at the margin and yellow necrotic tissue in the 
central area. A large amount of pale yellow translucent 
inflammatory fluid and yellow flocculent fibrinous exu-
date accumulated in the joint cavity of the wrist, hock, 
and hip joints (Fig.  1C). Serous omphicitis with severe 
gelatinous swelling of the umbilical pore was obvious. 
The umbilical veins and bilateral umbilical arteries were 
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thickened significantly, with black and red adventitia and 
gelatinous edema of the surrounding connective tissue. 
The umbilical arteries were full of dirty dark red necrosis, 
and the intima was rough (Fig. 1D).

Severe serofibrinous pericarditis, pleuritis, and peri-
tonitis: A large amount of pale-yellow translucent fluid 
and yellow white flocculent fibrinous exudates in the 
pericardial, chest, and abdominal cavities, and slight 
adhesion of the local serous membrane were observed 
(Fig.  1E and F). The kidneys and liver were swol-
len and dark red, with moist and glossy surfaces, and 

the submucosa of the renal pelvis was thickened and 
showed yellowish gelatinous edema. The lungs were 
enlarged, dark red in color, covered with flocculent 
fibrinous exudates, and the interstitium of the pulmo-
nary lobule was generally widened and full of yellow 
translucent gelatinous exudate (Fig. 2A). The transverse 
diameter of the heart was significantly widened, and the 
epicardial membrane was attached to a flocculent yel-
lowish-white fibrinous exudate. Hyperemia and edema 
of the abomasum mucosa and intestinal pneumatosis 
were observed.

Fig. 1  Gross pathology findings. A marked bulging in the umbilical region; B umbilical arteritis; The black arrow represents the swollen hock joint 
of the hind limb and the subcutaneous tissue near it was light yellow gelatinous material due to inflammatory edema. C the knee joint of the right 
hind leg (edema and focal necrosis); The black arrow represents a large amount of pale yellow translucent inflammatory fluid and yellow flocculent 
fibrinous exudate accumulated in the joint cavity. D the umbilical arteries; The black arrow represents the umbilical arteries were full of dirty dark 
red necrosis. E fibrinous peritonitis; The black arrow represents yellow white flocculent fibrinous exudates in the abdominal cavities. F fibrinous 
pleurisy; The black arrow represents yellow white flocculent fibrinous exudates in the chest. The green arrow represents the lungs were enlarged, 
dark red in color
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Histopathology
Serous interstitial pneumonia and lobular interstitial 
pneumonia were significantly widened and filled with 
homogeneous pink stained serous fluid (Fig. 2A). A small 
amount of fibrous protein, diffused neutrophils, scat-
tered or clustered small blue bacilli, and a large number 
of neutrophils within lymphatic vessels at all levels were 
observed (Fig.  2B). Pulmonary hyperemia and sporadic 
serous fluid, erythrocytes, and neutrophils were found 
in the alveolar and bronchial lumens near the lobular 
interstitium (Fig. 2C and D). Serous necrotizing umbilical 

arteritis with hyperemia, edema, and marked thicken-
ing of the tunica adventitia of the umbilical artery filled 
with homogeneous pink serous fluid, scattered or dif-
fused infiltrating neutrophils, and scattered or clustered 
small blue-stained bacilli were observed (Fig. 2E and F). 
Necrosis of the tunica intima and partial tunica media 
with diffused neutrophils and increased blue-stained 
bacterial clusters of varying sizes were observed; there 
was a large amount of serous fluid, necrotic neutrophils, 
and erythrocytes in the lumen of the artery (Fig.  2F). 
Mild hepatic sclerosis: hepatic interstitial connective 

Fig. 2  Histopathological findings. A serous interstitial pneumonia; The black arrow represents the interstitium of the pulmonary lobule 
was generally widened. B microscopy showing distinct widening of the alveolar septum, filled with massive neutrophils (black bar = 200 μm); 
Arrowhead shows position of the alveolar septum. C the accumulation of neutrophils in pulmonary vessels (green bar = 50 μm); Arrowhead shows 
position of the neutrophils. D hematoxylin–eosin staining of pulmonary interstitium intravascular bacterial clumps (blue bar = 20 μm); Arrowhead 
shows position of the bacterial clumps. E necrotizing umbilical arteritis (yellow bar = 1000 μm); The black arrow indicates the position of the tunica 
adventitia of the umbilical artery, and the green arrow indicate the pink serous fluid positions. F diffuse infiltration of neutrophils in umbilical artery; 
bacterial clumps were observed abundantly (red bar = 100 μm); The black arrow indicates the position of bacterial clumps, and the green arrow 
indicate the neutrophils positions
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tissue proliferated and widened mildly, with small bile 
duct increase; liver edema, obvious Disse space, incom-
plete wall of hepatic sinusoid, hemolysis, and hepatocytes 
separated from each other were seen. Mild steatosis and 
scattered necrosis of hepatocytes in the central area of 
the hepatic lobule were observed. Renal hyperemia and 
edema, mild to moderate cell swelling of the renal tubular 
epithelia, occasional necrosis of the renal tubular epithe-
lia in some renal tubules, and increased neutrophil con-
tent in the pelvis were observed. Hyperemia and edema, 
loose capsules with scattered infiltrating neutrophils, and 
cells in the zona fasciculata separated from each other 
were observed in the adrenal glands. Lymphocyte reduc-
tion, fewer lymph nodules with inconspicuous germinal 

centers, and diffuse hemorrhage of the medulla were 
observed in the lymph nodes. Hyperemia and edema, 
significantly reduced lymphocytes, white pulp lympho-
cyte nodules with sparse lymphocytes of white pulp were 
observed in the spleen. Mild to moderate cellular swell-
ing of cardiomyocytes was observed. Serous necrotizing 
enteritis: significant edema and thickening of the small 
intestine wall, large amount of serous fluid, diffuse infil-
trating neutrophils, and necrotic mucosal layer were 
observed in the small intestine. The marginal acinar epi-
thelial cells of the thyroid gland were partially necrotic. 
Blue-stained bacterial clusters of varying sizes or diffuse 
blue-stained small bacilli were present in the interstitium 
and serous membranes of most tissues and organs as well 

Fig. 3  Morphology of the Escherichia coli isolate analyzed using staining. A adrenal glands; bacterial clumps (black arrowhead) are observed 
abundantly (green bar = 20 μm). B Gram staining of Escherichia coli. The Gram stain of a positive culture demonstrates gram-negative bacilli 
on microscopy (× 100) (Black bar = 20 μm). C Phylogenetic analysis of 16S rRNA sequences of the isolated strain. The tree was constructed using 
the neighbor-joining method with 1000 replicates for bootstrap values using MEGA 6
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as in small blood vessels and lymphatic vessels (Fig. 3A). 
This was accompanied by scattered or diffuse infiltrat-
ing neutrophils, particularly in the lymphatic vessels of 
tissues filled with neutrophils (lymphatic spread). The 
endothelial cells separated severely from the media of the 
small vessels because of edema.

Bacterial isolation and molecular identification
Pleural fluid, pericardial exudate, ascites, joint fluid, lung, 
liver, and umbilical artery wall were aseptically collected 
with an inoculation loop and inoculated on MacConkey 
and eosin-methylene blue (EMB) medium and cultivated 
at 37 °C for 24 h. Many small pink colonies grew on the 
MacConkey medium. The EMB medium grew many 
small, round, shiny black colonies characteristic of E. coli. 
Using an inoculation loop, a small amount of the organ-
ism was collected to prepare a smear. Simple gram-nega-
tive small rods having the same morphology as that of E. 
coli were detected using Gram staining (Fig. 3B).

In this study, the 16S rRNA of the cultured bacte-
ria was sequenced. We selected ten colonies from each 
plate (total 70 colonies) for polymerase chain reaction 
(PCR) detection and sequencing. General primer sets 
(10Fx:5′-AGA​GTT​TGA​TCC​TGG​CTC​AG-3′; 1509R:5′-
GTT​ACC​TTG​TTA​CGA​CTT​CAC-3′) were selected to 
amplify the 16S rRNA from all the colonies isolated from 
the baby giraffe samples [12, 13]. For amplification, the 
following conditions were used: initial denaturation at 
95 °C for 3 min; 30 cycles of denaturation (30 s at 94 °C), 
annealing (30  s at 55  °C), extension (1.5  min at 72  °C), 
and final extension at 72 °C for 5 min. The amplified PCR 
products were analyzed on 1.5% agarose gels, purified, 
and sequenced. Through BLAST searches, the sequences 
were compared with those in the NCBI database. The 
results indicated that all the 70 colonies were of E. coli; 
they also revealed a nucleotide sequence similarity of 
99.16–99.79% to strains from human feces (CCFM8332), 
Yuncheng Salt Lake (YC-LK-LKJ9), poultry droppings 
(AKP_87), marine (CSR-33, CSR-59), wetland (CH-8), 
and wastewater treatment plant (WTPii241) (Fig. 3C).

The phylogenetic groups of E. coli isolates were identi-
fied using a PCR-based method developed by Clermont 
et  al. E.  coli was classified into four main phylogenetic 
groups (A, B1, B2, and D) based on the presence of three 
markers (chuA, yjaA, and TSPE4.C2) in their DNA. 
Crude DNA was extracted from colonies by lysing them 
in sterile water at 100  °C for 15  min, followed by cen-
trifugation. The lysis supernatant was utilized for the 
polymerase chain reaction, following the conditions out-
lined by Clermont et al. [21]. The primers utilized in this 
investigation are detailed in Supplementary Table 1. PCR 
analysis of the isolate indicated its classification within 
phylogenetic group B1 (Fig.  4A). A total of twenty-five 

virulence genes were identified, including PAI, papA, 
fmH, kpsMT III, papEF, ibeA, fyuA, bmaE, sfa/focDE, 
iutA, papG allele III, hlyA, rfc, nfaE, papG allele I, kpsMT 
II, papC, gafD, cvaC, focG, traT, papG allele I, papG 
allele II, afa/draBC, cnf1, and sfas. Each virulence gene 
was amplified using specific primers in PCR. The prim-
ers utilized in this investigation are detailed in Supple-
mentary Table 1. Thermal cycling conditions included an 
initial denaturation cycle at 94 °C for 2 min, followed by 
35 cycles at 94 °C for 1 min, annealing at a specific tem-
perature for 1 min, and extension at 72 °C for 1 min, with 
a final cycle at 72 °C for 2 min. In this strain, 6 virulence 
genes (PAI, iutA, papG allele III, cvaC, sfas, afa/draBC) 
associated with adhesion, toxicity, and environmental 
response were identified (Fig.  4B). E.  coli strains were 
tested for antibiotic susceptibility using CLSI guidelines 
and a disc diffusion method with 16 antibiotics [22]. The 
resistance profiles of the E.  coli strains to the antibiot-
ics tested are outlined in Table 1, with interpretation of 
all susceptibility results based on the CLSI guidelines 
[22]. The strains exhibited resistance to ceftazidime, cef-
triaxone, ciprofloxacin, levofloxacin, amoxicillin, and 
azithromycin, while demonstrating susceptibility to peni-
cillin, oxacillin, lincomycin, clindamycin, ampicillin, and 
cotrimoxazole.

Discussion and conclusions
Among neonatal hand-reared giraffes, failure of  passive 
transfer of immunity (FPI) continues to be a problem 
[16]. The cotyledonary placentas in giraffes transfer neg-
ligible antibodies. Therefore, newborns rely on colostrum 
consumption and the absorption of maternal antibodies 
across the intestines during the first 24–48 h after birth 
[16, 23, 24]. FPI increases the risk of diarrhea, enteri-
tis, septicemia, arthritis, omphalitis, and pneumonia in 
domestic ungulates [25–28]. Passive immunity transfer 
during the newborn’s first week is crucial for the success-
ful rearing of ruminant neonates.

To ensure optimal and steady growth, milk replacers 
must have a composition similar to that of giraffe milk. 
Bovine milk and colostrum have been effectively uti-
lized and advised for hand-rearing giraffes despite the 
lower fat and protein contents of cow’s milk and milk 
substitutes than that of giraffe milk [16]. Until the regu-
lar consumption of solid food, milk should be consumed 
daily in amounts of 7–10% of the body weight (19,000–
25,000 kcal/day) [16]. A hand-fed giraffe calf (which did 
not receive colostrum) died of septicemia caused by E. 
coli in the present study. Septic arthritis and phlegmon 
are caused by trauma or systemic infection. No trauma 
was recorded in this giraffe pup. Therefore, systemic 
infection may have contributed to the septic polyarthri-
tis and/or phlegmon observed in this study. Enteritis, 
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pneumonia, and funisitis are common sources of infec-
tion in giraffe calves; enteritis and pneumonia were not 
recorded in giraffe calves before the development of 
arthritis [15, 29, 30]. Furthermore, the lack of immuno-
competence might have put the calves at a risk of the 
infection spreading systemically through the umbili-
cal cord. Septic polyarthritis and/or phlegmon may be 
caused by systemic infection. A PCR and sequence analy-
sis confirmed that E. coli was the cause of bacteremia in 
the present case.

E. coli colonizes newborn pups’ gastrointestinal tract 
shortly after birth and typically coexists with its host 
without causing disease. However, certain strains with 
specific virulence attributes can cause a range of illnesses 
in immunocompromised hosts or when gastrointestinal 
barriers are compromised. Extraintestinal pathogenic 
E. coli (ExPEC) are characterized primarily by their site 
of isolation, with the most clinically significant groups 

being uropathogenic E. coli (UPEC), neonatal meningi-
tis-associated E. coli (NMEC), avian pathogenic E. coli 
(APEC), and septicemic E. coli (SEPEC) [29, 31]. ExPEC 
strains have the ability to cause infections in various 
extraintestinal locations. In the present case, the ExPEC 
strain resulted in pneumonia, umbilical arteritis, hepa-
titis, nephritis, hemorrhagic lymphadenitis, necrotizing 
enteritis, and necrotizing thyroiditis in the baby giraffe. 
There is no doubt that this is a direct result of E.  coli 
bacteremia. In order to initiate bacteremia, the ExPEC 
strain must successfully infiltrate initial sites of infec-
tion or colonization, disseminate throughout the blood-
stream, and persist within the blood. Nevertheless, the 
ExPEC strain has the capability to access the bloodstream 
through various pathways. Bacteremia lacking a discern-
ible origin is classified as primary, while secondary bac-
teremia may result from dissemination originating from 
an existing infection, such as pneumonia or urinary tract 

Fig. 4  The gel electrophoresis images of PCR product of the phylogenetic groups and virulence genes. A The PCR profiles were specific 
to the phylogenetic groups of E. coli. The determination of a strain’s phylogenetic group was achieved through the amplification of the chuA 
and yjaA genes, as well as the DNA fragment TSPE4.C2. The negative control was included in Lane NC. B PCR was used to detect virulence genes
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infections, or from contaminated medical equipment [5]. 
In this case, however, the bacteremia was likely a result 
of an umbilical cord infection. Improper handling of the 
umbilical cord presents a potential risk of infection, as it 
serves as a significant entry point for pathogens in new-
borns. Therefore, it is strongly advised that veterinarians 
adhere to proper disinfection, sterilization, isolation, and 
other cleaning protocols to ensure optimal umbilical cord 
hygiene when handling neonates.

ExPEC uses various factors to cause disease in animals, 
including adhesins, invasins, protectins, iron acquisition 
systems, and toxins [32, 33]. These factors help ExPEC 
adhere, invade, evade the immune system, colonize, pro-
liferate, and spread throughout the body, leading to infec-
tion in animals [33, 34]. Other bacterial factors such as 
secretion systems, quorum sensing systems, transcrip-
tional regulators, and two-component systems also play 
a role in ExPEC pathogenesis [35–37]. In this study, the 
virulotyping revealed that the E. coli strain was positive 
for PAI, iutA, papG allele III, cvaC, sfas, and afa/draBC. 
Adhesins are bacterial components that help them stick 
to other cells or surfaces, increasing their virulence. Spe-
cific adhesins are adapted to colonize different environ-
ments. Virulence genes linked to adhesion include papG 
allele III, sfas, and afa/draBC. Iron is a crucial micronu-
trient necessary for the growth and proliferation of bac-
teria within the host following successful colonization 
and/or invasion. Among the most significant virulence 
plasmids associated with ExPEC virulence are ColV and 
ColBM, particularly those containing the aerobactin 
operon (iutA/iucABCD). This operon codes for high-
affinity iron-transport systems that enable bacteria to 

acquire iron in low-iron environments, such as those 
found in host fluids and tissues. Our isolates carrying vir-
ulence genes were found to possess the iutA gene, which 
facilitates survival in low iron conditions.

Antibiotics are commonly utilized for the prevention 
and treatment of ExPEC infections. However, the wide-
spread use of antibiotics has been linked to the develop-
ment of multidrug-resistant bacteria. The high levels of 
antibiotic resistance observed in ExPEC strains present 
a significant risk to human health, as antibiotic-resistant 
bacteria and genes can be transmitted through the food 
chain. Previous research has shown that ExPEC iso-
lates exhibit resistance to multiple antibiotics [38, 39], 
underscoring the importance of conducting antibiotic 
susceptibility testing to identify the most effective treat-
ment option. In this particular instance, the E. coli strain 
exhibited broad-spectrum beta-lactamase production. 
β-Lactam antibiotics, particularly 3rd generation cepha-
losporins, are commonly prescribed for the treatment of 
serious community-onset or hospital-acquired infections 
caused by E. coli. Regrettably, β-lactamase production in 
E.  coli continues to be a significant factor in the devel-
opment of resistance to β-lactam antibiotics [33, 40]. 
β-lactamases are bacterial enzymes that render β-lactam 
antibiotics ineffective through hydrolysis.

This study presents findings on septic polyarthritis 
and/or septicemia in juvenile giraffes, potentially attrib-
uted to insufficient colostrum intake and E. coli infection 
via the umbilical cord. Furthermore, the study elucidates 
the diverse array of virulence factors exhibited by the E. 
coli strain and underscores the pathogenic significance 
of these pathogens in animal health. Continued research 
is warranted to identify additional virulence factors and 
elucidate the pathogenic mechanisms, ultimately aiding 
in the development of an effective diagnosis and treat-
ment strategy for managing giraffe colibacillosis.
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