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Abstract
Background Mounting evidence suggests that malondialdehyde (MDA) and 8-hydroxy-2’-deoxyguanosine 
(8-OHdG) are valuable biomarkers of lipid and nucleic acid oxidation in numerous canine diseases. However, 
their application in clinical settings is limited due to the absence of reference intervals (RI) and the analytical 
inconsistencies. Therefore, this study aimed to characterize serum MDA and 8-OHdG concentrations in dogs, to 
establish assay-specific RI, and to identify biological, haematological and biochemical factors influencing these 
markers.

Methods A total of 190 clinically healthy dogs were recruited, including pet dogs, working dogs and shelter dogs. 
Serum MDA concentration was measured by the Thiobarbituric Acid Reactive Substances (TBARS) assay, while 
8-OHdG levels were determined by using a competitive ELISA. RI were established by non-parametric methods. 
Potential associations between oxidative stress (OS) biomarkers and multiple biological, haematological and 
biochemical factors were assessed using multivariate regression models.

Results RI for serum MDA (1.85–14.51 µM) and 8-OHdG (0.06–0.75 ng/mL) were established in the reference 
population (144 and 143 dogs, respectively). The multivariate regression model for MDA revealed a positive 
association with total cholesterol concentration, and a negative association with monocyte count. 8-OHdG level was 
positively associated with urea concentration. Notably, both models also revealed a significant association between 
MDA and 8-OHdG. Biological factors, including the age and size of the animals, did not exert a significant influence on 
the results.

Conclusions This is the first study to establish serum RI for MDA and 8-OHdG in a large and diverse canine 
population. Additionally, the multivariate regression models identified relevant haematological and biochemical, 
but not biological factors that should be considered when interpreting the results. These findings could significantly 
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Background
The term “oxidative stress” (OS) was first introduced 
by Helmut Sies in 1985 as an imbalance between oxi-
dants and antioxidants, favouring the oxidants, that may 
induce damage in biological systems [1]. The concept has 
undergone redefinition over the years to account for its 
essential role in physiological signaling processes. Nev-
ertheless, it has been proven to participate in the patho-
genesis of multiple diseases, as a consequence of the 
molecular damage caused by the accumulation of exces-
sive amounts of reactive species, especially reactive oxy-
gen species (ROS), reactive nitrogen species (RNS), and 
their byproducts [2–4].

Given that redox biology involves numerous com-
pounds and biochemical pathways, a major challenge in 
assessing OS in clinical practice lies in its measurement 
[4–6]. Diverse biomarkers have been identified, reflect-
ing either direct oxidative damage to biomolecules or the 
antioxidant defences. Oxidative damage can be assessed 
by measuring products of ROS-mediated modifications. 
Malondialdehyde (MDA), a metabolite of lipid peroxi-
dation, is one of the most widely employed biomarkers 
of OS. Numerous techniques have been developed for 
its quantification, including High Performance Liquid 
Chromatography (HPLC) and mass spectrometric assays, 
which display high sensitivity and specificity. However, 
the Thiobarbituric Acid Reactive Substances (TBARS) 
assay is one most commonly used assays due to its sim-
plicity and availability in clinical settings [7–11]. Among 
DNA oxidation biomarkers, 8-hydroxy-2’-deoxyguano-
sine (8-OHdG) is one of the most extensively studied. 
8-OHdG is a byproduct of ROS-mediated guanine oxida-
tion, which can be quantified in tissues and body fluids 
by various highly specific but complex techniques (e.g. 
HPLC, gas chromatography with mass spectrometry) as 
well as by more readily available assays such as Enzyme-
Linked Immunosorbent Assay (ELISA) [12–16].

These biomarkers have demonstrated clinical utility in 
dogs. Elevated MDA levels, as measured by the TBARS 
assay, have been associated with various canine diseases, 
including leishmaniosis [17–19], ehrlichiosis [20, 21], 
hypothyroidism [22, 23], inflammatory bowel disease 
[24], chronic kidney disease [25], obesity [26], hyperlipi-
daemia [27], and cancer [9, 28]. MDA has also been found 
to be useful for assessing other situations in dogs such 
as emotional stress, recovery after surgery and physical 
exercise, among others [29–36]. Furthermore, increased 
DNA oxidation, as indicated by elevated 8-OHdG lev-
els, has been observed in dogs with babesiosis [37], atrial 

fibrillation [38], malignant mammary gland tumours [39] 
and following prolonged exercise [40].

However, despite the evidence of the clinical value of 
MDA and 8-OHdG in canine diseases, their use in vet-
erinary medicine remains largely confined to research. 
Several factors contribute to this, including the lack of 
established reference intervals (RI) and the variability in 
analytical assays. Currently, no established RI have been 
reported for 8-OHdG in dogs, and only one study has 
suggested RI for plasma MDA in this species, using a rel-
atively small sample size [41]. Additionally, multiple ana-
lytical assays can be used to measure MDA and 8-OHdG, 
each with inherent variations. This variability can signifi-
cantly impact the reported values, making comparison 
between studies and individual cases difficult [6, 7, 11, 
41], and limiting their application in clinical practice.

Hence, the main objective of this study was to char-
acterize serum concentrations of MDA and 8-OHdG in 
healthy dogs. We aimed to establish assay-specific RI for 
MDA measured by TBARS, and 8-OHdG measured by 
competitive ELISA, in accordance to the American Soci-
ety for Veterinary Clinical Pathology (ASVCP) guidelines 
[42]. Additionally, we assessed the influence of various 
sources of biological variation on the assays, and the 
relationship between these biomarkers and several hae-
matological and biochemical variables. Providing data on 
these aspects could pave the way for the application of 
these biomarkers in clinical settings.

Methods
Reference population, inclusion and exclusion criteria
This study followed the ASVCP’s Quality Assurance and 
Laboratory Standards Committee (QALS) guidelines for 
the determination of de novo RI in veterinary species 
[42]. An initial population of 190 clinically healthy dogs 
was recruited, exceeding recommended minimum of 120 
animals to employ nonparametric statistical methods 
with 90% confidence intervals (CI) [42]. The initial popu-
lation encompassed three distinct groups of animals: 82 
privately-owned pet dogs, 56 working police dogs and 
52 dogs residing in a rescue shelter. This aimed to rep-
resent the heterogeneity of the canine species. All ani-
mals were located in the Community of Madrid (Spain). 
Blood samples were collected during routine health 
checks at the Veterinary Teaching Hospital of the Com-
plutense University of Madrid, between July 2021 and 
December 2022. These analyses included haematological 
and biochemical profiles, along with testing for antibod-
ies against two prevalent vector borne pathogens in the 
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area (Leishmania infantum and Ehrlichia canis) [43, 44]. 
MDA and 8-OHdG concentration measurements were 
performed on the remaining serum volume from these 
routine health checks. Therefore, an ethics approval was 
not needed, as confirmed by the Veterinary Teaching 
Hospital criteria. Dog owners were informed of the use of 
remaining serum samples for scientific purposes.

Inclusion criteria for this study comprised dogs of any 
age, sex, breed, and size, demonstrating clinical health 
based on physical examination, including normal body 
condition, and laboratory results. Exclusion criteria 
included any history of pre-existing diseases, recent med-
ication use (min. 1 month), or evidence of disease from 
the physical examination or laboratory analyses.

Blood sampling and preanalytical factors
Venous blood samples were collected and transferred 
into 0.5 mL tubes containing K3 EDTA for the haema-
tology profile. For biochemistry and serology analyses, 
blood was transferred into 5 mL plain tubes and centri-
fuged (1200  g, 10  min) for serum separation. The hae-
matological and biochemical analyses were performed 
within 3  h of sample collection. Surplus serum samples 
were aliquoted and stored at -80ºC for cortisol, infectious 
diseases antibodies and OS biomarkers determination. 
OS biomarkers were determined in batches complying 
with their stability data [45, 46]. In view of the interfer-
ence due to hemolysis, icterus and lipemia on TBARS 
assay, samples showing any of these alterations were 
excluded [47].

Laboratory analyses
The haematology profile was conducted on an automated 
haematology analyzer (URIT 2900Vet Plus TS®, URIT 
Global Diagnostics Supplier, China), which included red 
blood cell count (RBC), haemoglobin (HB), hematocrit 
(HCT), mean corpuscular volume (MCV), mean cor-
puscular hemoglobin (MCH), mean corpuscular haemo-
globin concentration (MCHC), white blood cell count 
(WBC), platelet count (PLT) and mean platelet volume 
(MPV). Blood smears were stained with May-Grün-
wald‐Giemsa, and evaluated for manual differential leu-
kocyte counts [neutrophils (NEU), lymphocytes (LYM), 
monocytes (MONO), eosinophils (EOS) and basophils 
(BASO)]. The biochemistry profile was obtained using 
an automated biochemistry analyzer (TC220®, Jiangxi 
Tecom Science Corporation, China), which included 
17 variables: urea (UREA), creatinine (CRE), total pro-
tein (TP), albumin (ALB), globulins (GLOB), albumin/
globulins ratio (A/G), alanine aminotransferase (ALT), 
aspartate aminotransferase (AST), gamma-glutamyl-
transferase (GGT), alkaline phosphatase (ALKP), lactate 
dehydrogenase (LDH), calcium (Ca), phosphate (P), cal-
cium/phosphate ratio (Ca/P), total cholesterol (CHOL), 

uric acid (UA) and creatine kinase (CK). Serum cortisol 
was measured by a competitive ELISA, previously vali-
dated by the laboratory, as a potential indicator of psy-
chogenic stress in the dogs [48–50]. In addition, serum 
antibodies against Leishmania infantum and Ehrlichia 
canis were determined by immunofluorescence antibody 
test (IFAT).

OS biomarkers were assessed using commercially avail-
able kits. Serum MDA concentration was determined 
using a TBARS assay kit (Cayman Chemicals, USA). This 
method relies on the reaction between MDA and thio-
barbituric acid (TBA) under elevated temperatures and 
acidic conditions, producing an MDA-TBA adduct that is 
quantified spectrophotometrically at 540 nm. The results 
were expressed in MDA concentration (µM). This kit had 
been previously employed in canine serum and plasma 
samples [26, 36, 51].

Serum 8-OHdG was quantified by a competitive ELISA 
[Highly Sensitive 8-OHdG Check, Japan Institute for the 
Control of Aging (Jaica), Japan], validated for canine sam-
ples by the manufacturer [46]. The assay included a fil-
tration of serum samples prior to analysis using an ultra 
filter (cut off molecular weight 10,000) (Amicon® Ultra, 
Merck KGaA, Germany). Results were expressed in 
8-OHdG concentration (ng/mL).

Statistical analysis
Statistical analysis for the establishment of RI was con-
ducted following the ASVCP and the Clinical and Labo-
ratory Standards Institute (CLSI) guidelines, using the 
set of macroinstructions for Microsoft Excel®Reference 
Value Advisor [42, 52, 53]. Descriptive analysis was pro-
vided and the normality of data distribution was assessed 
by means of histograms and the Anderson-Darling test, 
considering a p value < 0.050 as statistically significant. 
The Tukey’s test was employed to identify and remove 
potential outliers. Reference limits were then calculated 
through nonparametric methods, encompassing the cen-
tral 95% of the reference values with 90% CI. The parti-
tioning into the three study groups (pet dogs, police dogs 
and shelter dogs) was evaluated using the statistical crite-
ria of Lahti et al. [54] and clinical considerations, as rec-
ommended [42, 55].

Univariate and multivariate statistical analysis were 
conducted to evaluate the influence of the sources of bio-
logical variation and the analytical variables on OS bio-
markers. Firstly, univariate analysis was performed by 
non-parametric tests using SPSS® Statistics (IBM®, Spain). 
Differences between sexes were evaluated through the 
Mann-Whitney U test, and differences between variables 
with three or more categories [study groups and dog sizes 
(small, medium and large)] were assessed using the Krus-
kall-Wallis test with Bonferroni’s correction. To examine 
the uniformity of groups in terms of dog sizes and sexes, 
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the demographic data of the groups were subjected to a 
Chi-squared test. The Spearman’s Rho test was used to 
evaluate the statistical correlation between OS biomark-
ers and numerical variables (age, haematological, bio-
chemical variables and serum cortisol). A p value < 0.050 
was considered statistically significant in every case.

Finally, to identify the factors that had a significant 
impact on OS biomarkers when evaluated as a whole, 
multivariate regression models were constructed for each 
OS biomarker using statistical software STATA™ (Stata-
Corp LLC, USA). The OS biomarker (MDA or 8-OHdG) 
was defined as the dependent variable and the “reference 
dog” was defined as a male pet dog. The model evaluated 
the effect of the biological variables (group, sex, age, size), 
along with the effect of those numerical (haematological 
and biochemical) variables that had showed statistically 
significant association with each biomarker in univariate 
analysis.

Results
Reference population
Out of the initial population of 190 animals, 26 dogs were 
excluded from the study due to clinical data meeting 
exclusion criteria, or due to abnormal haematological or 
biochemical results. Additionally, 11 dogs were excluded 
due to positive serology tests, and 9 dogs were discarded 
in view of haemolytic or lipemic serum samples. As a 
result, statistical analysis was conducted on a reference 
population of 144 dogs.

The reference population (n = 144) encompassed 57 
pet dogs (40%), 43 police dogs (30%) and 44 shelter dogs 
(30%), of both sexes [76 males (53%) and 68 females 
(47%)], with ages ranging from 6 months to 16 years 
[mean 3,93 years and standard deviation (SD) 2,90], and 
various sizes [small (n = 19; 13%), medium (n = 28; 20%) 
and large (n = 97; 67%)]. The population included 31 
breeds: mixed-breed dogs (25% of the reference popula-
tion), German Shepherd (14%), Belgian Malinois (14%), 
American Staffordshire Terrier (8%), Pitbull Terrier 
(7%), Labrador Retriever (5%), Spanish Greyhound (3%), 
Podenco (3%), and others (see supplementary material).

Pet dogs group (n = 57) consisted of 29 males (51%) 
and 28 females (49%), ranging in age between 6 months 
and 10 years (mean 3.21; SD 2.81), sized small (28%), 
medium (37%) and large (35%). Pet dogs belonged to 
multiple breeds, mainly mixed-breed dogs (32%), Lab-
rador Retriever (7%), Podenco (7%), Maltese (5%) and 
others. The group of police dogs (n = 43) consisted of 18 
males (42%) and 25 females (58%), between 6 months 
and 9.5 years of age (mean 4.83; SD 2.37). All police dogs 
were large, being Belgian Malinois (47%), German Shep-
herd (44%), Labrador Retriever (5%), German Short-
haired Pointer (2%) and mixed-breed dogs (2%). Shelter 
dogs group (n = 44) included 29 males (66%), 15 females 

(34%), ranging from 6 months to 16 years of age (mean 
3.98; SD 3.28), of the three sizes [small (7%), medium 
(16%) and large (77%)]. Shelter dogs belonged to various 
breeds [mixed-breed (39%), American Staffordshire Ter-
rier (25%), Pitbull Terrier (21%) Spanish Greyhound (7%) 
and others] (see supplementary material).

The Chi-squared test showed no significant differ-
ence in sex distribution between the groups (p = 0.075). 
Conversely, the groups were not uniform in dog sizes 
(p < 0.001).

Reference intervals
Descriptive statistics and the RI established for serum 
MDA and 8-OHdG, obtained with nonparametric meth-
ods in Reference Value Advisor, are presented in Table 1. 
The frequency histograms of both biomarkers are illus-
trated in Figs.  1 and 2. The Anderson-Darling method 
revealed both biomarkers followed non-Gaussian distri-
butions (p < 0.001). The Tukey’s test identified one outlier 
in the distribution of 8-OHdG, which was deemed an 
aberrant observation and subsequently excluded from 
the reference population. Conversely, other observations 
flagged as “suspicious” by the Tukey’s test for MDA and 
8-OHdG were retained in the absence of evidence of dis-
ease or analytical inaccuracies. As a result, the final refer-
ence population comprised 144 dogs for MDA and 143 
dogs for 8-OHdG.

Mean MDA concentrations in the three study groups 
were 8.14 µM (SD 3.03) in pet dogs; 7.30 µM (SD 3.32) in 
police dogs; and 6.16 µM (SD 3.31) in shelter dogs. Mean 
8-OHdG concentrations were 0.43 ng/mL (SD 0.21) for 
pet dogs; 0.41 ng/mL (SD 0.19) for police dogs; and 0.43 
ng/mL (SD 0.19) for shelter dogs. According to Lahti et 
al. (2004) statistical recommendations for non-Gauss-
ian distributions [54], partitioning into the three study 
groups (pet, police, and shelter dogs) could be applied for 
both biomarkers. However, statistical results from mul-
tivariate analysis and clinical considerations were also 
taken into account, as recommended [42, 54, 55], which 
did not support partitioning. Therefore, the entire popu-
lation RI were retained for both biomarkers.

Univariate analysis
The Kruskal-Wallis test showed statistically significant 
differences between groups for MDA (p = 0.006), but not 
for 8-OHdG (p = 0.835) (Figs. 3 and 4). The concentration 
of MDA was found to be significantly lower in shelter 
dogs compared to pet dogs (p = 0.004), but no statistically 
significant differences were observed between the other 
groups. No significant differences between sizes were 
found by the Kruskal-Wallis test for MDA (p = 0.196), nor 
8-OHdG (p = 0.605). Similarly, no significant differences 
between sexes were found by the Mann-Whitney U test 
for MDA (p = 0.090) nor 8-OHdG (p = 0.733).
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The Spearman’s Rho method revealed no signifi-
cant correlation between age and MDA (p = 0.681) nor 
8-OHdG (p = 0.203). Regarding analytical variables, 
MDA showed significant correlation coefficients (R) with 
MONO (p = 0.027, R=-0.185), EOS (p = 0.048, R=-0.165) 
and CHOL (p < 0.001, R = 0.518). 8-OHdG showed sig-
nificant correlations with UREA (p < 0.001, R = 0.402), 
CRE (p = 0.007, R = 0.229) and AU (p = 0.008, R = 0.225). Ta
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Fig. 2 Histogram depicting the frequency distribution for serum 8-hy-
droxy-2’-deoxyguanosine (8-OHdG) in the reference population (n = 143). 
Serum 8-OHdG distribution was non-Gaussian, according to the Ander-
son-Darling test (p < 0.001)

 

Fig. 1 Histogram depicting the frequency distribution for serum malo-
ndialdehyde (MDA) in the reference population (n = 144). Serum MDA 
distribution was non-Gaussian, according to the Anderson-Darling test 
(p < 0.001)
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Fig. 4 Box plots showing median (line within box), 25th and 75th percentiles (box) and minimum and maximum values (whiskers), of serum 8-hy-
droxy-2’-deoxyguanosine (8-OHdG) results in the three groups of study

 

Fig. 3 Box plots showing median (line within box), 25th and 75th percentiles (box) and minimum and maximum values (whiskers), of serum malondial-
dehyde (MDA) results in the three groups of study (pet, police and shelter dogs). Data points lying between 1.5 (○) and 3 times (*) the interquartile range 
above the third quartile or below the first quartile are represented in the figure
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Spearman’s Rho test also revealed a significant corre-
lation between MDA and 8-OHdG values (p = 0.008, 
R = 0.219). The rest of the analytical variables, including 
serum cortisol, did not show significant correlations with 
OS biomarkers.

Multivariate regression models
To evaluate the influence of the biological factors (group, 
sex, size and age) along with the analytical variables that 
showed significant correlation with each biomarker in 
the univariate analysis, a multivariate regression model 
was constructed for each biomarker. The model for 
MDA revealed significant positive influences of CHOL 
(p < 0.001) and 8-OHdG (p = 0.001) values, and a signifi-
cant negative influence of MONO value (p = 0.036). Addi-
tionally, shelter dogs were found to display significantly 
lower MDA values than pet dogs (p = 0.010). The rest 
of the biological (sex, age and size) and analytical vari-
ables (EOS) did not significantly impact MDA value. The 
model for 8-OHdG confirmed the positive relationship 
between 8-OHdG and MDA (p = 0.011), and the positive 
influence of UREA (p < 0.001). The associations between 
8-OHdG and CREA or AU were discarded by the model. 
Coefficient estimates, standard errors, and p-values 
obtained for each variable are displayed in Tables 2 and 3.

Discussion
Even though MDA and 8-OHdG have been suggested 
as clinically valuable biomarkers in multiple canine dis-
eases and conditions [9, 17–40], their application in 
clinical settings is still scarce, likely due to the absence 
of established RI and the discrepancies between analyti-
cal techniques [6, 7, 11, 41]. The present study is the first 
to report assay-specific RI for MDA and 8-OHdG in the 

canine species, as well as identifying various significantly 
related haematological and biochemical factors.

RI for serum MDA and 8-OHdG
RI for both biomarkers were obtained through Reference 
Value Advisor, calculating reference limits with 90% CI 
using nonparametric methods, and encompassing the 
central 95% of the observations. Normality of distribu-
tions were assessed using the Anderson-Darling test, and 
outliers were identified using the Tukey’s test [53].

Serum MDA and 8-OHdG concentrations in the refer-
ence population (n = 144 and n = 143, respectively) were 
found to follow non-Gaussian distributions. In contrast 
to some thoroughly regulated biochemical analytes (such 
as electrolytes or glucose), other biochemical variables 
do not typically follow Gaussian distributions [56], which 
could apply to these by-products of oxidative damage, 
influenced by the multiple factors affecting redox homeo-
stasis [4].

The present study established a RI for canine serum 
MDA concentration of 1.85 to 14.51 µM (mean 7.28; SD 
3.29), being the first RI reported for this analyte in a large 
population, as recommended in the ASVCP guidelines 
[42], and serving as an stepping stone for its utilization in 
clinical settings. The only previous study that suggested 
RI for plasma MDA in dogs obtained lower results, but 
comprised a rather limited population in number and 
biological sources of variation (56 medium-sized mon-
grel dogs, aged 3–4 years) [41]. In accordance with our 
results, various studies have reported blood MDA con-
centrations in control dogs within our RI [31, 36]. Other 
studies obtained higher or lower plasma/serum MDA 
values in small groups of healthy dogs [17, 23, 51], which 

Table 2 Output of the final multivariate regression model for factors associated with serum malondialdehyde (MDA) in the canine 
reference population. Statistically significant associations (p < 0.050) are displayed in bold. SE, standard error; CI, confident intervals; 
MONO, monocytes; CHOL, cholesterol; 8-OHdG, 8-hydroxy-2’-deoxyguanosine
MDA Coefficient SE t value p value 95% CI
Group
Police -0.4642142 0.5353112 -0.87 0.387 -1.522966 0.594538
Shelter -1.401647 0.5326891 -2.63 0.010 -2.455214 -0.3480812
MONO -1.453809 0.6846023 -2.12 0.036 -2.807833 -0.0997851
CHOL 0.0328542 0.0043803 7.50 0.000 0.0241907 0.0415176
8-OHdG 3.999976 1.149238 3.48 0.001 1.726984 6.272967
Constant 0.2718914 1.152349 0.24 0.814 -2.007254 2.551037

Table 3 Output of the final multivariate regression model for factors associated with serum 8-hydroxy-2’-deoxyguanosine (8-OHdG) 
in the canine reference population. Statistically significant associations (p < 0.050) are displayed in bold. SE, standard error; CI, confident 
intervals; MDA, malondialdehyde
8-OHdG Coefficient SE t value p value 95% CI
UREA 0.0064659 0.0013167 4.91 0.000 0.0038623 0.0090696
MDA 0.0117486 0.0045499 2.58 0.011 0.0027514 0.0207458
Constant 0.0790695 0.0609389 1.30 0.197 -0.0414329 0.1995719
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could be attributed to the analytical variations of TBARS 
assay [6, 7, 11].

This study established a RI for canine serum 8-OHdG 
concentration of 0.06 to 0.75 ng/mL (mean 0.42; SD 
0.20). While previous works have measured 8-OHdG in 
canine tissues and other body fluids [38, 39, 57–59], this 
is the first study reporting a canine serum RI. This finding 
holds potential for expanding the investigation of DNA 
oxidative damage in canine pathology through the use of 
serum samples. Our finding could only be compared to 
a single study reporting a serum mean value of 1.44 ng/
mL in a control canine population, although the antibody 
used in their assay recognizes other damaged nucleic spe-
cies besides 8-OHdG, yielding higher values [37]. Other 
studies have measured plasma or serum 8-OHdG in dogs 
[40, 60, 61], but lacked necessary data (numerical results 
and pre-filtration details) for a proper comparison.

For both MDA and 8-OHdG, it was decided to pre-
serve the entire reference population RI rather than par-
titioning into study groups (pet, police and shelter dogs) 
in the absence of clinical criteria or published data that 
supported otherwise [42, 54, 55].

Influence of biological factors on OS biomarkers
While the univariate analysis identified various poten-
tial influences, the multivariate models provided a more 
comprehensive approach, revealing the biological and 
analytical factors significantly associated with MDA and 
8-OHdG. Regarding the sources of biological variation, 
neither MDA nor 8-OHdG showed significant associa-
tions with age or size of the animals. Although OS has 
been associated with cellular senescence, the relation-
ship between age and oxidation rate has not been proven 
in all animal models, and seems to be non-linear, prob-
ably due to other affecting factors such as genotype, gene 
expression and mitochondrial function [62]. Additionally, 
as a result of the correlation between size and lifespan 
in dogs, heterogeneous populations such as the present 
one may fail to reveal associations between OS biomark-
ers and age or size separately [57, 63–65]. This study did 
not find significant associations between sex and MDA 
or 8-OHdG. While a prior study reported variations in 
ROS levels across the oestrus cycle in female dogs [66], 
information on the reproductive status was not recorded 
in our study, limiting further exploration of this aspect. 
Additionally, the breed factor could not be assessed due 
to the racial heterogeneity of the reference population.

We measured serum cortisol to assess psychogenic 
stress aiming to investigate if police or shelter dogs expe-
rienced heightened psychogenic stress and its potential 
relationship with OS biomarkers. However, no signifi-
cant associations were found between cortisol and MDA 
nor 8-OHdG. This could be attributed to the inherent 
difficulties in assessing of psychogenic stress through 

analytical variables, and the documented lack of specific-
ity of glucocorticoids in this aspect [67–73]. Lastly, the 
regression model showed lower MDA in shelter dogs. 
No clear clinical explanations were found for this finding, 
which could be influenced by an individual lower value 
(0.17 µM) that was not flagged as outlier by the software 
but may have influenced the model.

Associations between OS biomarkers and haematological 
and biochemical variables
The regression model for serum MDA revealed posi-
tive associations with 8-OHdG and CHOL values, and a 
negative association with MONO. The positive relation-
ship between MDA and 8-OHdG concentrations would 
be fully in line with the underlying mechanisms of OS. 
Firstly, it seems reasonable that those individuals that 
are more exposed to OS experienced increased lipid and 
DNA oxidation, especially considering that many reac-
tive species, such as hydroxyl radicals (•OH), are able to 
oxidize both biomolecules [74–76]. Secondly, it would 
be plausible that increased lipid peroxidation induced 
enhanced DNA oxidation. This would be supported by 
the fact that oxidized membrane phospholipids expe-
rience structural damages that affect cellular integrity 
[77–79], which may increase the exposure of nucleic 
acids to oxidation. Furthermore, oxidation of fatty acids 
produces lipid peroxides and other aldehydes, such as 
MDA, acrolein or isoprostanes, that are chemically active 
and capable of diffusing throughout the cytoplasm and 
further oxidizing other molecules, namely proteins and 
nucleic acids [11, 16, 80–82]. A previous study reported 
increased levels of both MDA and 8-OHdG in mam-
mary tissue of dogs with carcinomas [39], but the present 
work would be the first to find a significant association 
between both biomarkers in canine serum.

The positive association between MDA and CHOL 
values could be explained by in vivo and in vitro mecha-
nisms. Increased CHOL levels have been found in dogs 
with higher body condition scores [83], and a rise in 
lipid peroxidation, as demonstrated by higher MDA val-
ues, has been reported in obese dogs [26] and dogs with 
hyperlipidemia [27]. The present study encompassed 
healthy dogs and excluded underweight and overweight 
dogs, but it is possible that individuals with a higher 
body fat percentage presented an increase in tissue lipid 
peroxidation. Furthermore, along with membrane phos-
pholipids, CHOL itself is one of the main targets of 
lipid peroxidation by free radicals and other oxidants, 
potentially yielding several products such as MDA [84]. 
This could represent another in vivo mechanism of this 
relationship. In vitro explanations could be related to 
the ability of TBA to react with other lipids, apart from 
MDA, during TBARS assay [7, 8, 11, 85]. In this study, 
visually lipemic samples were excluded in light of the 
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interference of lipemia with the assay [47]. However, 
given that circulating CHOL is transported by various 
lipoproteins [56], it seems possible that samples with 
higher CHOL levels also carried other lipids capable of 
cross-reacting with TBARS assay.

The model also showed an inverse association between 
MDA and MONO values. It has been reported that 
MDA forms adducts with low-density lipoproteins 
(LDL) (MDA-LDL), which are recognized by macro-
phages’ scavenger receptors, leading to their internaliza-
tion and foam cell formation [86]. Moreover, MDA-LDL 
adducts seem to trigger macrophage apoptosis, mediated 
by immune complexes (IC) and tumour necrosis factor 
(TNF) [87]. While investigating these mechanisms would 
require more complex analytical methods, it could be 
plausible that similar processes could contribute to the 
observed inverse relationship between MDA and MONO 
values.

The regression model for 8-OHdG confirmed its posi-
tive association with MDA concentration, and revealed 
a positive association with UREA. The latter could be 
attributed to the renal excretion of both analytes [88]. 
Notably, 8-OHdG has been reported as a valuable bio-
marker in humans with chronic renal disease [88–90], 
renal carcinoma [91], and diabetic nephropathy [92] but, 
to our knowledge, this would be the first study to find 
associations between serum UREA and 8-OHdG concen-
trations in dogs.

Limitations of the present study include the lack of 
information regarding the dogs’ diet and reproduc-
tive status. Further studies are needed to investigate the 
potential influence of these factors on MDA and 8-OHdG 
values.

Conclusions
OS has been proven to be a critical mechanism in the 
pathogenesis of several canine diseases, but the data on 
RI and biological and analytical factors associated with 
two of the most widely used biomarkers is still scarce. 
The present study is the first to establish assay-specific 
RI for serum MDA (1.85–14.51 µM) and 8-OHdG (0.06–
0.75 ng/mL) in a large and heterogeneous population of 
dogs. Additionally, the study revealed a positive relation-
ship between both biomarkers, in line with the biochemi-
cal basis of OS, and demonstrated significant associations 
between MDA, CHOL and MONO values; and 8-OHdG 
and UREA concentrations. These data seem to have 
promising clinical value and could favour the application 
of MDA and 8-OHdG in a broader clinical spectrum.
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