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worldwide epidemic, and is one of the major epidemio-
logical diseases leading to the decline in cattle perfor-
mance. In 1946, BVDV was first discovered and isolated 
by Olafson in the United States [3], and since then it 
has become widely prevalent all over the world. It was 
introduced into China in the 1980s. In addition to cattle, 
BVDV can infect sheep, goats [4, 5], pigs [6], deer [7] and 
members of the camelid family [8]. At present, BVDV is 
a serious threat to the development of animal husbandry 
in China and even globally, causing significant economic 
losses. Therefore, the detection and prevention of BVDV 
are of great significance.

Currently, the methods for detecting BVDV include 
virus isolation [9], PCR technique [10, 11], serum 

Background
Bovine viral diarrhea virus (BVDV) is a positive-sense 
ribonucleic acid (RNA) virus belonging to the genus Pes-
tivirus in the family Flaviviridae, which causes bovine 
viral diarrhoea (BVD) [1]. BVD is an acute, subacute, 
chronic or cryptogenic infection. The clinical manifesta-
tions include acute diarrhea, respiratory disease, immu-
nosuppression, and reproductive disorders [2]. BVD is a 
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Abstract
Background Bovine diarrhea virus (BVDV) is considered to be the most common pathogen causing severe diarrhea 
in cattle worldwide and can cause Bovine viral diarrhea (BVD). Clinical manifestations of fever, diarrhea, ulcers, and 
abortions, resulting in significant economic losses to the cattle industry. The development of an efficient, rapid and 
sensitive assay suitable for field conditions is of great significance for its early detection. Recombinase polymerase 
amplification (RPA) is a novel nucleic acid amplification method that has been widely used in the diagnosis of 
infectious diseases.

Results We developed a rapid assay (RPAS) combining RPA with SYBR Green I for the detection of BVDV. The BVDV 
RPAS assay was performed at 37 °C in 25 min. The minimum detection limit of the RPAS assay is 1 × 109 copies/µL 
in sunlight and 1 × 105 copies/µL in ultraviolet light, and there is no cross-reactivity with other viruses that cause 
gastrointestinal and respiratory infections in cattle. The coincidence rate of BVDV RPAS in clinical samples was higher 
than that of PCR.

Conclusions The BVDV RPAS assay established in this study has high sensitivity and specificity, and is expected to be 
a powerful tool for the prevention and control of BVD.
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neutralization test [12], enzyme-linked immunosor-
bent assay [13, 14], and so on. The virus isolation relies 
on live viruses to determine a positive result, which is 
time-consuming and difficult to isolate [9]. The molecu-
lar biology assays detecting viral genomic DNA are either 
time-consuming or expensive or require sophisticated 
laboratory setup and skilled staff [11]. The serologic 
methods depend on high quality antisera and are likewise 
more expensive [14]. Therefore, there is an urgent need 
to establish a set of rapid, accurate and simple diagnos-
tic methods to provide a new generation of detection 
technology and means for the on-site diagnosis of this 
disease.

Recombinase polymerase amplification (RPA) is a 
nucleic acid level detection technique that is different 
from PCR, and involves three main enzymes: single-
stranded nucleic acid recombinase, single-stranded 
DNA-binding protein and strand-substituted DNA poly-
merase [15]. The RPA reaction requires low temperature, 
a short reaction time, simple operation, does not require 
special equipment [16], and is also very stable to reagents 
[17]. Currently, commonly used methods for RPA prod-
uct detection include agarose gel electrophoresis (AGE) 
[15], real-time fluorescence [18], chemical color devel-
opment [19], electrochemistry [20], and lateral flow test 
strips (LFD) [21]. Our RPAS assay avoids the requirement 
of an electrical assay. The SYBR Green I dye is embedded 
in the reaction system, and the amplified RPA product is 
interpreted by visual observation of the color change in 
sunlight or UV light, called RPAS. Although RPA assay 

has been widely used for the detection of various patho-
gens such as Mycobacterium tuberculosis [22], Heterotri-
chous nematodes [23], African swine fever virus [24], and 
Yersinia coli [25]. To date, no RPA assay has been devel-
oped for BVDV visual detection.

Therefore, we developed a rapid and sensitive BVDV 
RPAS assay for the rapid, specific, and sensitive visual 
detection of BVDV. The performance of the assay was 
further evaluated by testing nasal swabs, anal swabs and 
blood serum samples from clinical cattle.

Results
Construction and characterization of the PcDNA 3.1-BVDV 
Recombinant plasmid
The BVDV 5’UTR was constructed into the pcDNA 3.1 
vector using Bam HI and Hind III enzymes to obtain 
the pcDNA 3.1-BVDV recombinant vector, and the vec-
tor mapping is shown in Fig. 1A. The pcDNA 3.1-BVDV 
recombinant plasmid was digested by AGE (1%) to obtain 
a 365 bp target band (Fig. 1B), and sequencing was also as 
expected (Figure S1).

Establishment and optimization of reaction conditions for 
BVDV RPA assay
Candidate primers for the BVDV RPA assay were selected 
by Twist Amp ® Basic reaction. The AGE (2%) results 
showed that primer sets 5’UTR-1 F/R, and 5’UTR-2 F/R 
had specific amplification efficiency and produced a 
product with an expected size of 208  bp (Fig.  2A). The 
primer set 5’UTR-3 F/R amplified a 206 bp fragment, but 

Fig. 1 pcDNA 3.1-BVDV recombinant plasmid construction and characterization. (A) pcDNA 3.1-BVDV recombinant plasmid mapping. (B) pcDNA 3.1-
BVDV enzymatic identification. Lane M: molecular weight standard (1 kb plus DNA Marker); Lane 1: Bam HI single enzyme cleavage; Lane 2: Hind III-Bam 
HI double enzyme cleavage, and the expected size of the product was 365 bp
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with more non-specific bands and primer dimerization. 
Under the same conditions, the 5’UTR-1  F/R produced 
the brightest and best amplification of the target band. 
Therefore, it was subsequently used in the BVDV RPA 
assay.

The optimal conditions for BVDV RPA assay were 
determined by testing different temperatures (30  °C, 
32  °C, 35  °C, 37  °C, 39  °C, 42  °C) and reaction times 
(10  min, 15  min, 20  min, 25  min, 30  min, 40  min). As 
shown in Fig. 2B, the target fragment gradually became 
brighter as the reaction temperature increased. The 
color change was the most intense at 37 °C. At 39 °C, the 
brightness of the target fragment gradually decreased. 
Therefore, 37 °C was determined to be the optimal reac-
tion temperature. The same method was used to deter-
mine the optimal reaction time for the BVDV assay as 
25 min (Fig. 2C). We performed 12 BVDV RPA assays on 
standard DNA and verified the good reproducibility of 
the assay (Fig. 2D).

Sensitivity and specificity evaluation of the BVDV RPAS 
assay
To optimize the concentration of SYBR Green I and to 
determine BVDV RPA assay sensitivity and reproduc-
ibility, we added different concentrations of SYBR Green 
I to the reaction system and performed three indepen-
dent biological replicates. Under sunlight, the minimum 
detection limit of BVDV RPAS was 10×, with 50× being 
the most effective (Fig.  3A). Under UV, the minimum 
detection limit of BVDV RPAS was 0.16×, with 50× being 
the most effective (Fig. 3B). Therefore, 50× was selected 
for the BVDV RPAS determination.

The quantified pcDNA 3.1-BVDV recombinant plas-
mid was diluted in 11 gradients, i.e., 1 × 106 copies/
µL-1 × 10− 4 copies/µL. The sensitivity of RPA assay was 
detected by the fluorescent dye technique or electro-
phoretic detection technique. Nuclease-free water was 
used as a negative control. Under sunlight, the minimum 
detection limit for BVDV RPAS visualization was 1 × 103 
copies/µL. Under UV, the lowest detection threshold for 
BVDV RPAS was 1 × 101 copies/µL. The minimum detec-
tion limit for BVDV RPA-AGE was 1 × 10− 1 copies/µL. 
The minimum detection limit for BVDV PCR-AGE was 

Fig. 2 Optimization of reaction conditions for BVDV-RPA reaction conditions. (A) BVDV-RPA primer screen, Lane M: molecular weight standard (50 bp 
DNA Marker); Lane 1: 5’UTR-1 primers; Lane 2: 5’UTR-2 primers; Lane 3: 5’UTR-3 primers; Lane 4. Negative control. An amplification of 208 bp obtained using 
5’UTR-1 primers primer. (B) BVDV RPA temperature condition reaction optimization, Lane M: molecular weight standard (50 bp DNA Marker); Lane 1: 30 
℃; Lane 2: 32 ℃; Lane 3: 35 ℃; Lane 4: 37 ℃; Lane 5: 39 ℃; Lane 6: 42 ℃; Lane 7: Negative control. (C) Optimization of BVDV RPA time conditions, Lane 
M: molecular weight standard (50 bp DNA Marker); Lane 1: 10 min; Lane 2: 15 min; Lane 3: 20 min; Lane 4: 25 min; Lane 5: 30 min; Lane 6: 40 min; Lane 7: 
Negative control. (D) Reproducibility of BVDV RPA assay. Lane 1 ∼ 11: 1012 copies/µL ∼ 101 copies/µL
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1 × 104 copies/µL (Fig. 3C). The detection limit of BVDV 
RPAS was much higher than that of BVDV PCR.

The specificity of the BVDV RPA assay was evaluated 
using six bovine respiratory and diarrhoea-associated 
viruses. The results showed (Fig. 3D) that only the 5’UTR 
gene purpose band appeared in the pcDNA 3.1-BVDV 
recombinant plasmid. The others (IBRV, BCoV, BRV, 
BNoV, BAstV, and nuclease-free water), demonstrating 
the high specificity of our assay.

Validation of the BVDV RPAS assays on clinical samples
To evaluate the practical clinical application of the BVDV 
RPAS assay, we detected cattle nasal swabs, anal swabs, 
and blood serum samples from cattle with significant 
respiratory and diarrheal disease. The results are shown 
in Fig.  4; Table  1, the positive rate of BVDV RPA-AGE 
and PRAS in cattle nasal swab and blood serum sam-
ples was 55% (22/40), while and 47.5% (22/40) for PCR-
AGE. Two samples were negative for PCR and positive 
for RPAS (Fig. 4A). In cattle anal swabs samples, BVDV 
RPA-AGE and RPAS assays were consistent, with 55% 
positive rate (Fig.  4B) and 35% for PCR-AGE (Fig.  4C). 

Therefore, the proposed BVDV RPA/RPAS assay is fea-
sible for BVDV detection in unknown samples.

Discussion
BVDV is an important pathogen in cattle that can cause 
BVD and is also an agent of bovine respiratory disease, 
which is distributed globally and can cause significant 
economic losses [26, 27]. Based on phylogenetic analy-
sis of the 5’UTR gene into two distinct genetic species, 
BVDV-1 (1a-1t) and BVDV-2 (2a-17c) [28]. BVDV-1 is 
predominantly prevalent in China [29]. The RPA assay 
is an emerging isothermal nucleic acid amplification 
technique that has been applied to detect pathogens in 
a variety of samples, such as blood [30], food [31], and 
feces [32]. In our study, we established BVDV RPAS assay 
based on BVDV-1 and validated it in cattle nasal swabs, 
anal swabs and blood serum samples.

The BVDV RPAS assay established in this study can be 
performed in only 25 min at 37 °C, without expensive or 
large instruments, with simple incubation conditions, 
even at body temperature [33]. In our study, the colour 
change was strongest at 37 °C and gradually decreased at 
39 °C, which may be due to inactivation of the enzyme in 

Fig. 3 Specificity and sensitivity evaluation of BVDV RPAS assay. (A) Under sunlight, BVDV RPA visualization graph. (B) Under UV light, BVDV RPA visualiza-
tion graph. Tube 1 ∼ 3: three replicates; Tube 4: negative control. (C) Visualization assay identification of the BVDV RPAS assay. Lane M: molecular weight 
standard (50 bp DNA Marker); Lane 1 ∼ 11: 1 × 106 copies/µL ∼ 1 × 10− 4 copies/µL; Lane 12: Negative control. (D) Specificity of BVDV RPAS assay. Lane M: 
molecular weight standard (50 bp DNA Marker); Lane 1: BVDV; Lane 2: IBRV; Lane 3: BCoV; Lane 4: BRV; Lane 5: BNoV; Lane 6: BAstV; Lane 7: Negative control
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the system at high temperature, or the decrease of primer 
annealing efficiency by high temperature. The conven-
tional PCR products are detected by AGE, whereas 
qPCR methods require a companion instrument. In 
terms of reaction time, the RPAS assay gives faster results 
(< 45 min) than the PCR/qPCR method (> 1 h) [34]. The 
cost of the RPAS platform is high (∼$60.25) compared 
to conventional PCR (∼$3.70) and real-time fluores-
cent quantitative PCR (∼$2) [35, 36]. However, the RPA 
assay is resistant to a variety of known PCR inhibitors, 
including hemoglobin, heparin, undiluted serum, and 
ethanol [37]. In addition, we added SYBR Green I for 
endpoint monitoring, reducing the overall cost of the test 
and making it suitable for resource-limited areas. The 
SYBR Green I is a phorbol ester dye that has been used 
as a nucleic acid stain for the assay platform in several 

studies. It binds preferentially to double-stranded DNA, 
producing a DNA dye complex that emits a green light 
and is detectable by the naked eye [38–40]. Although 
there have been studies combining LFD with RPA assays, 
it is relatively costly compared to the SYBR Green I assay 
[41]. Meanwhile, we found that the minimum detection 
limit of RPAS was 100-fold higher than that of PCR-AGE 
under sunlight and 1,000-fold higher than that under UV.

The RPAS assay is expected to challenge the dominant 
position of PCR molecular detection with its advan-
tages. However, it still has some limitations. False posi-
tives may exist in the RPAS assay, so the reaction tubes 
should be opened and closed carefully and gloves should 
be changed frequently. The SYBR Green I should be 
added to the tube cap in advance when visualizing the 
assay. Meanwhile, the technology is more costly and less 

Table 1 Comparison of RPA-AGE, PCR-AGE and RPAS using clinical samples
Sample Type RPA-AGE(Positive/total) PCR-AGE(Positive/total) RPAS(Positive/total)
Nasal swab 22/40 19/40 22/40
Anal swab 20/40 19/40 20/40
Blood serum 22/40 14/40 22/40
Total 64/120 52/40 64/120

Fig. 4 Selected clinical samples for BVDV RPAS assay. (A) Cattle nasal swab sample testing; (B) Cattle anal swab sample testing; (C) Cattle blood serum 
sample testing. Lane M: molecular weight standard (50 bp DNA Marker); Lane 1 ∼ 10: Cattle clinical samples; Lane 11: Negative control; Lane 12: Positive 
control. The expected size of the RPAS assay product is 208 bp, and the expected size of the PCR assay product for clinical samples is 354 bp. The testing 
of other samples is shown in Figure S2、S3、S4
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popular, but the premixing of the RPA assay reaction 
system can be completed in advance, and the total vol-
ume can be reduced to 12.5 µL (1/4 of the original vol-
ume), thus reducing the cost of the assay. In addition, 
low-cost commercial nucleic acid extraction methods 
for field samples based on magnetic bead technology and 
the heated NaOH method can be used to further reduce 
the cost of the RPAS assay [42]. Furthermore, equipped 
with a miniature UV torch, it increases the sensitivity 
of sample detection and avoids the subjectivity of visual 
judgement.

In summary, the BVDV RPAS assays with high speci-
ficity and sensitivity is simple, rapid and reliable for 
BVD detection. It is suitable for rapid testing in under-
equipped diagnostic laboratories as well as for BVDV 
diagnosis in quarantine stations and cattle farms, which 
is of great significance for controlling BVD.

Conclusions
The BVDV RPAS assay can be performed in 25  min at 
37  °C with high specificity and no cross-reactivity with 
other pathogens. The detection limit of the RPAS assay 
was 1 × 103 copies/µL, which combines the sensitivity 
and specificity of traditional PCR with ease of opera-
tion and observable results. Therefore, the BVDV RPAS 
assay could be a potential solution for BVDV detection in 
resource-limited laboratories or in the field.

Methods
Viruses and clinical samples
The BVDV 5’UTR gene information is based on the 
BVDV-1 (MA/101/05, GenBank ID: MW054940.1). 
Other bovine virus used for cross-reactivity testing 
included Bovine rhinotracheitis virus (IBRV), Bovine 
coronavirus (BCoV), Bovine rotavirus (BRV), Bovine 
Norovirus (BNoV), Bovine Astrovirus (BAstV). Informa-
tion on the virus is given in Table 2.

The clinical samples were 10 nasal swabs, anal swabs, 
and blood serum samples of diarrheic cattle collected 
separately in the Ningxia region (July 2022).

Generation of the pcDNA3.1-5’UTR standard plasmid
Considering the applicability of the assay and the limita-
tion by the source of the pathogen, we screened and arti-
ficially synthesised a 365 bp sequence of the 5’UTR gene 
(GenBank ID: MW054940.1) of BVDV as the target gene 

for amplification. The target gene was constructed into 
the pcDNA 3.1 vector using Hind III and Bam HI enzyme 
(NEB, item no. R0104/ R0136) restriction enzymes, and 
transformed into E. coli receptor cell Top10 to obtain the 
pcDNA 3.1-BVDV recombinant plasmid.

Plasmid extraction was performed according to the 
instructions of the Axygen Plasmid Extraction Kit 
(item no. AP-MN-P) and measured using a Nanodrop 
ND-8000 spectrophotometer (Thermo Scientific, Drei-
eich, Germany). The DNA copy number was calculated 
by the following formula: DNA copy number = (M × 
6.02 × 1023 × 10− 9)/(n × 660), where M is the amount of 
DNA in nanograms, and n is length of the plasmid in bp.

The RPAS primers were manually designed based on 
the conserved region of the 5’UTR gene of BVDV accord-
ing to the instruction provided by the RPA assay manu-
facturer Twist Dx (Cambridge, UK). The primers were 
screened by observation at 2% AGE. Additionally, com-
mon PCR primers were designed for the constructed 
plasmid sequences (Table  3). All primers were synthe-
sized by Sangon Biotech (Shanghai, China).

Establishment and optimization of reaction conditions for 
BVDV RPA assay
Referring to the instructions of the Twist Amp ® Basic 
RPA kit (Twist Dx, No. 10270-106), RPA assay was per-
formed using the extracted recombinant plasmid pcDNA 
3.1-BVDV as a template. The RPA reaction system con-
sisted of 2 µL of template, 11.2 µL of sterile deionized 
water, 29.5 µL of RPA reaction buffer, 2.4 µL each of the 
F and R primers, and 2.5 µL of magnesium acetate solu-
tion, which was mixed well and then fully solubilized in 
4  mg of RPA Basic lyophilisate. The RPA reaction pro-
gramme was 39  °C for 20 min. The products were elec-
trophoresed on a 2% AGE. The results were visualized on 
a UV gel imaging system and photographed. A portion 
of the amplified product was mixed with l µL of SYBR 
Green I fluorescent dye (Solarbio, No. SY1020) and irra-
diated with UV light at 395 nm. To provide more visual-
ization of the experimental results, we present a cropped 
gel image, which is free of samples and bands, and finally 

Table 2 Specific experimental strains of BVDV RPAS assay
Virus GenBank ID Gene
bovine rhinotracheitis virus(IBRV) MK654723.1 gB
Bovine coronavirus (BCoV) KT318096.1 N
Bovine rotavirus (BRV) M92651.1 VP6
Bovine Norovirus (BNoV) KX189094.1 RdRp
Bovine Astrovirus (BAstV) MH123914.1 ORF1ab

Table 3 Primer information for BVDV RPAS and PCR assay
Primer name Primer sequence (5’-3’) Length 

(bp)
5’UTR-1 F GAGTTCGTTGGATGGCTGAAGCCCTGAGTA 208
5’UTR-1R AGTAGCATTACAGTGGGCCTCTGCAGCACC
5’UTR-2 F TGGTGAGTTCGTTGGATGGCTGAAGCCCTGA 208
5’UTR-2R GCATTACAGTGGGCCTCTGCAGCACCCTAT
5’UTR-3 F GCATTACAGTGGGCCTCTGCAGCACCCTAT 206
5’UTR-3R AGTAGCATTACAGTGGGCCTCTGCAGCACC
PCR-F TCTCGACCGGGGACATTATCT 354
PCR-F CATTCTGCAACGCGAAGGTG
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showing only images of the gels containing the target 
bands and Maker.

The main parameters of RPA assay are amplification 
temperature and reaction time. To optimize the BVDV 
RPA assay, various reaction temperatures (30  °C, 32  °C, 
35  °C, 37  °C, 39  °C, 42  °C), and times (10  min, 15  min, 
20  min, 25  min, 30  min, 40  min) were tested according 
to the manufacturer’s recommended protocol. The opti-
mal reaction was determined by the most visible color on 
the naked eye detection line or a specific band in the aga-
rose gel. Furthermore, the RPA assay was tested using the 
standard DNA in 12 replicates.

Sensitivity and specificity evaluation of the BVDV RPAS 
assay
The specificity of the assay was assessed in bovine respi-
ratory or diarrhea virus pathogens with similar clini-
cal signs. BVDV, IBRV, BCoV, BRV, BNoV, and BAstV 
recombinant plasmids were tested separately according 
to established RPA assays, and nuclease-free water was 
used as a nontemplate control in the assay.

To investigate the sensitivity of the RPAS assay, the 
quantified pcDNA 3.1-BVDV plasmid was subjected to 
11 gradients of dilution, i.e., 1 × 106 copies/µL-1 × 10− 4 
copies/µL. The sensitivity of the RPAS assay was tested 
by fluorescent dye technique as well as electrophoretic 
detection technique. The negative control template was 
still nuclease-free water. Comparison was also made with 
normal PCR.

Validation of the BVDV RPAS assays on clinical samples
To effectively examine the detection effect of BVDV 
RPAS assay on clinical samples, we tested 120 samples 
(40 nasal swabs, 40 anal swabs, and 40 sera) of bovine 
respiratory syndrome and diarrhea syndrome with obvi-
ous clinical symptoms in Ningxia (collected in July 2022) 
by RPAS assay. The nuclease-free water was used as a 
negative control, synthetic recombinant plasmid pcDNA 
3.1-BVDV was used as a positive control. The results 
were also compared with normal PCR to validate the 
RPAS assay.

Swab samples were resuspended in virus preservation 
solution, shaken for 10  min, centrifuged at 12,000  rpm 
for 10  min to remove the solid precipitate, and filtered 
in a sterile manner through a 0.22 μm filter membrane. 
Blood samples were centrifuged at 3,000 rpm for 10 min 
after an overnight incubation at 4  °C, and blood serum 
was extracted for subsequent tests. Viral genomic DNA/
RNA was extracted using the TianGen Viral Genomic 
DNA/RNA Extraction Kit (Item DP315). The RNA was 
reverse transcribed into cDNA by the Prime Script™ II 1st 
Strand cDNA Synthesis Kit (No. 6210 A) from TAKARA. 
The reverse transcribed cDNA and extracted DNA were 

subjected to PPA assay or PCR assay. Amplification prod-
ucts were detected by 2% AGE or visualization.
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