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Abstract 

Background  Accurately predicting male fertility is crucial for the animal breeding industry due to its significant eco-
nomic implications. Existing literature suggests that mammalian fertility is partially dependent on sperm DNA integ-
rity. However, routine semen analysis often fails to detect DNA damage and does not consistently correlate with field 
fertility outcomes. While assessing sperm DNA integrity provides valuable biological insights, its role in diagnosing 
animal infertility remains uncertain.

Results  This meta-analysis evaluated the association between sperm DNA fragmentation (SDF) and fertility in farm 
animals. Comprehensive searches were conducted using PubMed, Google Scholar, and Springer Link Library, 
with results stratified by animal species and SDF detection methods. Across 30 studies, the overall correlation coef-
ficient (COR) between SDF and male fertility was -0.46 (95% confidence interval [CI]: -0.54 to -0.37; Z = -8.97; p < 0.001). 
A significant association was observed in bulls (COR = -0.47; 95% CI: -0.54 to -0.40; Z = -11.13; p < 0.001) and stal-
lions (COR = -0.54; 95% CI: -0.72 to -0.29; Z = -3.83; p < 0.001), whereas no significant relationship was found in boars 
(COR = -0.19; 95% CI: -0.37 to 0.01; Z = -1.84; p = 0.07). The effect of SDF on male fertility was analyzed in 15 studies, 
demonstrating significantly higher SDF values in low-fertility animals compared to high-fertility groups (SMD = 0.85; 
95% CI: 0.68 to 1.01; Z = 10.07; p < 0.001). This pattern was observed in both bulls (SMD = 1.21; 95% CI: 0.85 to 1.57; 
Z = 6.59; p < 0.001) and stallions (SMD = 0.64; 95% CI: 0.44 to 0.85; Z = 6.14; p < 0.001) subgroups.

Conclusions  These findings suggest that incorporating SDF assays into breeding soundness evaluations could 
enhance the accuracy of selecting high-quality breeding males for artificial breeding programs. However, further 
research with adequately powered studies, standardized methodologies, and appropriate sample sizes is necessary 
to fully elucidate the impact of elevated SDF on fertility in farm animals.
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Background
Ensuring male fertility is essential for the profitability, 
sustainability, and advancement of the livestock indus-
try [1]. Subfertility can lead to prolonged calving or far-
rowing intervals, increased culling rates, and the need to 
maintain surplus males on the farm, all of which nega-
tively impact economic viability. Studies have shown that 
pregnancy rates per cycle in mares bred using cooled 
semen are approximately 67% [2–4], meaning that 
around 33% of mares fail to conceive following insemi-
nation in each cycle. In dairy cattle, the first-service con-
ception rate has reportedly declined from 70 to 40% over 
the past 30 to 50 years [5, 6]. Both male and female fac-
tors influence the likelihood of a successful pregnancy. 
Sperm DNA fragmentation, defined as the breakage of 
sperm DNA into single- or double-strand breaks [7], 
is proposed as one of the contributing factors to male 
subfertility.

The traditional assessment of sperm quality and male 
fertility typically relies on parameters such as sperm con-
centration, motility, and morphology across various spe-
cies [8–11]. However, certain sperm characteristics that 
influence fertility, particularly molecular-level factors 
such as sperm DNA fragmentation, may not be detect-
able through conventional semen analysis but could 
serve as potential biomarkers for fertility [12–14]. Fur-
thermore, research indicates that predicting male fertil-
ity based on a single sperm attribute alone is unlikely to 
be accurate. The fertilization process is highly complex, 
requiring a multifactorial approach for reliable evaluation 
[1, 9, 15–17].

In men, sperm DNA damage has been linked to 
impaired fertilization [18, 19], suboptimal embryo qual-
ity [20–22], reduced pregnancy rates [23, 24], and an 
increased risk of spontaneous abortion following IVF 
[7, 20, 25]. Similarly, in farm animals, sperm DNA frag-
mentation (SDF) has been associated with fertility differ-
ences between high- and low-fertility males [1, 25–28]. 
However, conflicting findings exist, as some studies 
have failed to establish a clear relationship between SDF 
and fertility parameters in animals [10, 29–31]. There-
fore, the objective of this meta-analysis was to perform 
a comprehensive evaluation using published data to 
assess the correlation between SDF and fertility param-
eters across various farm animal species, including cat-
tle, horses, pigs, and sheep. We sought to determine the 
impact of sperm DNA integrity and assay type on fertility 
outcomes.

Results
Literature search and selection of studies
The search strategy yielded 1528 citations. After review-
ing the titles or abstracts, 1448 articles were deemed 

irrelevant and excluded. Full papers were obtained for 
the remaining 80 citations. Of these, 33 were excluded as 
they did not meet the inclusion criteria of SDF and fertil-
ity parameters. Seventeen studies were further excluded 
because the researchers either did not provide the value 
of the correlation coefficient or did not analyze the cor-
relation of SDF to fertility: (i) Bull (n = 8) [28, 32–38]; (ii) 
Stallion (n = 1) [30]; (iii) Boar (n = 5) [39–43]; (iv) Ram 
(n = 3) [27, 44, 45].

Based on the criteria outlined, the total number 
of included studies examining the linear association 
between SDF and fertility was thirty (Fig. 1). Fifteen stud-
ies grouped animals into high or low fertility categories 
and provided the mean and SD of SDF. Five studies that 
did not provide a correlation coefficient but met this 
inclusion criteria were included in this category [27, 28, 
30, 34, 39].

Study design characteristics
The main characteristics of the studies are presented 
in Tables  1 and 2. Thirty (30) studies with 943 animals, 
meeting all inclusion criteria, were considered for analy-
sis in the first part (Table 1). Sperm Chromatin Structure 
Assay (SCSA) was used to evaluate sperm SDF in eight-
een studies, terminal deoxynucleotidyl transferase dUTP 
nicked-end labeling (TUNEL) was used in four studies, 
sperm chromatin dispersion test (SCD)/Halomax in 10 
studies, and acridine orange test (AO) test in two studies. 
No study utilizing the Comet assay (neutral or alkaline) 
met the inclusion criteria, as the available studies were 
conducted on buffalo bulls [46, 47] or assessed fertility 
in vitro (IVF) [48, 49] and were therefore excluded.

Nineteen studies focused on bulls, six on stallions, 
and five on boars. Fertility was assessed using various 
parameters across the studies: non-return to estrus rate 
(NRR) in thirteen studies, pregnancy rate (PR) in eight, 
conception rate (CR) in five, farrowing rate (FR) in three, 
and direct boar effect (DBE) in one study. In the second 
part of the analysis (Table  2), a total of 15 studies were 
included in the review, comprising 311 animals in the 
high-fertility group and 213 in the low-fertility group. 
Fourteen of these studies were retrospective, while one 
was prospective. Various methods were employed to 
categorize subjects into high- and low-fertility groups 
(Table 2). Most studies used males of breeding age.

Meta‑analysis
In the first part of this meta-analysis, a significant nega-
tive correlation between SDF and fertility was observed 
across the thirty studies analyzed, with a correlation coef-
ficient (COR) of −0.46 (random effects model, 95% con-
fidence interval: −0.54 to −0.37; Z-test = −8.97; p < 0.001) 
(Fig.  2). Statistical heterogeneity was present, with a 
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heterogeneity value of 60.5% (p < 0.001). In the subgroup 
analysis, a significant negative correlation between SDF 
and fertility was found in bulls, with a correlation coef-
ficient of −0.47 (random effects model, 95% confidence 
interval: −0.54 to −0.40; Z-test = −11.13; p < 0.001). Simi-
larly, a significant correlation was observed in stallions, 
with a correlation coefficient of −0.54 (random effects 
model, 95% CI: −0.72 to −0.29; Z-test = −3.83; p < 0.001). 
However, no significant correlation was found between 
SDF and fertility in boars, where the correlation coeffi-
cient was −0.19 (random effects model, 95% confidence 
interval: −0.37 to 0.01; Z-test = −1.84; p = 0.07) (Fig.  3). 
Heterogeneity levels varied across subgroups: moder-
ate heterogeneity was observed in bulls (heterogene-
ity = 39.9%; p = 0.02), whereas stallions exhibited high 

heterogeneity (heterogeneity = 74.0%; p < 0.001). In con-
trast, no statistical heterogeneity was found in the boar 
subgroup (heterogeneity = 48.8%; p = 0.06). A combined 
assay-type analysis showed a significant correlation for 
both the SCSA (random effects model, COR = −0.43, 
95% confidence interval: −0.53 to −0.33; Z-test = −8.54; 
p < 0.001) and the (SCD)/Halomax method (random 
effects model, COR = −0.51, 95% confidence interval: 
−0.77 to −0.24; Z-test = −3.78; p < 0.001). However, no 
significant correlation was found for the TUNEL assay 
(random effects model, COR = −0.41, 95% confidence 
interval: −0.90 to 0.08; Z-test = −1.66; p = 0.098). Fur-
ther analysis of specific assays by species revealed signifi-
cant correlations for the SCSA method in bulls (n = 12) 
(random effects model, COR = −0.40, 95% confidence 

Fig. 1  Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flowchart used in the selection of eligible studies
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interval: −0.51 to −0.29; Z-test = −6.15; p < 0.001) and 
stallions (n = 4) (random effects model, COR = −0.51, 
95% confidence interval: −0.67 to −0.34; Z-test = −7.04; 
p < 0.001). Additionally, significant correlations were 
observed for the TUNEL method in bulls (n = 3) (ran-
dom effects model, COR = −0.61, 95% confidence inter-
val: −1.20 to −0.01; Z-test = −2.00; p = 0.046) and the 
Halomax/SCD method in bulls (n = 5) (random effects 
model, COR = −0.51, 95% confidence interval: −0.59 to 
−0.42; Z-test = −11.8; p < 0.001). However, no signifi-
cant correlation was found in studies utilizing the Halo-
max/SCD assay in boars (n = 3) (random effects model, 

COR = −0.04, 95% confidence interval: −0.27 to 0.18; 
Z-test = −0.38; p = 0.707) (Table 3).

In the second part of this meta-analysis, sperm DNA 
fragmentation (SDF) was significantly higher in the low 
fertility (LF) group compared to the high fertility (HF) 
group, with a standardized mean difference (SMD) of 
0.85 (random effects model, 95% confidence interval: 
0.68 to 1.01; Z-test = 10.07; p < 0.001). Moderate statisti-
cal heterogeneity was observed (heterogeneity = 40.3%; 
p = 0.02) (Fig.  4). A subgroup analysis was conducted 
based on species and the method of SDF detection. In 
species-specific analysis, a significantly higher SDF was 

Table 1  Characteristics of included studies addressing the correlation between sperm DNA fragmentation and fertility parameters

COR Correlation coefficient, NRR Nonreturn to estrous rate after 56, 59, or 96 days; PR Pregnancy rate and time of detection after AI, CR Conception rate, SPR Seasonal 
pregnancy rate, FR Farrowing rate, DBE Fertility direct boar index, FCP Percentage pregnant per first cycle, PC Percentage pregnant per cycle

Author & year Assay Design Number of 
animals

COR Species Fertility measure

Narud et al. [9] SCSA Retrospective 37 −0.57 Bull NRR56

Zoca et al. [31] SCSA Prospective 5 −0.41 Bull PR30-90d

Dogan et al. [29] TUNEL Retrospective 10 −0.02 Bull CR

Zahan et al. [50] Halomax Retrospective 10 0.53 Bull NRR

Dogan et al. [51] Halomax Retrospective 20 −0.69 Bull CR

Anzar et al. [52] TUNEL Retrospective 5 −0.90 Bull NRR56

Ballachey et al. [53] SCSA Retrospective 49 −0.40 Bull NRR

SCSA Retrospective 18 −0.53 Bull NRR59

Bollwein et al. [54] SCSA Prospective 20 −0.58 Bull NRR56

Erickson et al. [55] TUNEL Retrospective 43 −0.62 Bull NNR56

Gliozzi et al. [56] SCSA Retrospective 18 −0.17 Bull NRR

Garcia-Macias et al. [57] Halomax Retrospective 60 −0.42 Bull NRR96

SCSA Retrospective 60 −0.29 Bull

Januskaukas et al. [58] SCSA Retrospective 20 −0.53 Bull NRR56

Januskaukas et al. [59] SCSA Retrospective 18 −0.51 Bull NRR56

Ballachey et al. [60] SCSA Prospective 9 −0.94 Bull CR

Karoui et al. [61] Halomax Retrospective 201 −0.45, −0.49 Bull CR

Morrel et al. [17] SCSA Retrospective 31 −0.56 Bull NRR56

Nagy et al. [62] SCSA Retrospective 43 −0.05 Bull NRR

Kumaresan et al. [1] SCSA Retrospective 20 −0.61 Bull NRR56

Pardede et al. [63] AO Retrospective 9  −0.78, −0.73, −0.83 Bull CR

Halomax Retrospective 9  −0.69, −0.67, −0.77 Bull

Love and Kenney [26] SCSA Retrospective 84 −0.27, −0.42, −0.41 Stallion SPR, FCP, PC14-40d

Al-Kass et al. [2] SCSA Prospective 12 −0.35 Stallion SPR

Morrel et al. [8] SCSA Retrospective 11 −0.63 Stallion SPR

Atroshchenko et al. [64] Halomax Prospective 17 −0.94 Stallion PR14-18d

Crespo et al. [65] SCD Prospective 11 −0.62 Stallion PC15d

Kenney et al. [66] SCSA Retrospective 51 −0.40 Stallion SPR

Estrada et al. [67] SCD Prospective 12 −0.16, −0.39 Boar PR30d

Batista et al. [68] Halomax Prospective 5 0.38 Boar FR

Ausejo et al. [10] TUNEL Retrospective 58 −0.06, −0.09, 0.02 Boar DBE

Didion et al. [12] SCSA Retrospective 18 −0.55 Boar FR

Tsakmakidis et al. [69] AO Prospective 7 −0.90 Boar FR
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found in the LF group compared to the HF group in both 
bulls (random effects model, SMD = 1.21, 95% confi-
dence interval: 0.85 to 1.57; Z-test = 6.59; p < 0.001) and 
stallions (random effects model, SMD = 0.64, 95% confi-
dence interval: 0.44 to 0.85; Z-test = 6.14; p < 0.001). Sta-
tistical heterogeneity was present in the bull subgroup 
(heterogeneity = 46.5%; p = 0.02), whereas no significant 
heterogeneity was observed in the stallion subgroup (het-
erogeneity = 0%; p = 0.52) (Fig.  5). One study in rams, 
which contained two results, was excluded from the 
subgroup analysis due to statistical limitations. Regard-
ing the detection methods, SDF was significantly higher 
in the LF group compared to the HF group in studies 
employing the SCSA method in bulls (n = 6) (random 
effects model, SMD = 0.99, 95% confidence interval: 
0.61 to 1.38; Z-test = 5.03; p < 0.001) and stallions (n = 3) 
(random effects model, SMD = 0.64, 95% confidence 
interval: 0.43 to 0.86; Z-test = 5.95; p < 0.001). A sig-
nificant difference was also observed in studies utiliz-
ing the Halomax/SCD method in bulls (n = 3) (random 
effects model, SMD = 1.85, 95% confidence interval: 0.68 
to 3.01; Z-test = 3.10; p = 0.002) (Table  4). Two studies 

employed the TUNEL assay method; however, they were 
not included in the subgroup analysis due to statistical 
constraints.

Publication bias
The funnel plots and their corresponding bias coefficient 
(Begg and Mazumdar rank) for estimating the overall 
correlation between SDF and fertility for published stud-
ies (−0.165, p = 0.123) provide no evidence for publica-
tion bias among eligible studies. However, significant 
publication bias was observed in the overall standardized 
mean difference (SMD) between high and low fertility 
groups (0.434, p < 0.001) and in the subgroup analyses for 
the SMD in bulls (0.456, p = 0.01).

Discussion
This meta-analysis demonstrates the influence of sperm 
DNA fragmentation on male fertility in farm animals. 
The combined results reveal a significant negative cor-
relation between SDF and fertility. However, considering 
the differences in the reproductive biology across various 
farm animal species, the overall finding may have limited 

Table 2  Characteristics of included studies addressing the comparison of sperm DNA fragmentation between high and low fertility 
groups

LSmean least square mean, ERCR​ Estimated relative conception rate, FSCR First service conception rate, OR Odd ratio, NRR Nonreturn to estrous rate, SPR Seasonal 
pregnancy rate CR Conception rate

Author & year High 
fertility 
(n)

Low fertility (n) Assay Design Definition of high and low fertility

Narud et al. [9] 19 18 SCSA Retrospective LSmean 0.76 to 0.78 vs. 0.46 to 0.65, NRR56

Puglisi et al. [28] 90 15 SCSA Retrospective ERCR > −2.6 vs. ERCR < −2.6

TUNEL

Dogan et al. [29] 5 5 TUNEL Retrospective 6.14% vs. −9.94% deviation from average CR

Rosyada et al. [34] 4 4 AO Retrospective 79.04% vs. 65.84%, FSCR

Dogan et al. [51] 10 10 Halomax Retrospective  + 2 vs. −2 deviation from mean CR

Gliozzi et al. [58] 9 9 SCSA Retrospective ERCR ≥ 1 vs. ERCR ≤ 1

Garcia-Macias et al. [57] 20 20 Halomax Retrospective NRR ≥ 80 vs. NRR 70–40%

SCSA

Morrel et al. [17] 13 8 SCSA Retrospective Mean NRR > 100 vs. Mean NRR < 100

Kumaresan et al. [1] 6 5 SCSA Retrospective NRR > + 1 SD vs. NRR < −1 SD

Pardede et al. [63] 3 3 AO Retrospective %FSCR > 70% vs. %FSCR < 70%

3 3 AO

3 3 AO

3 3 Halomax

3 3 Halomax

3 3 Halomax

Paradowska-Dogan et al. [30] 14 14 SCSA Retrospective NRR 28% = 76–100% vs. 20–50%

Crespo et al. [65] 3 8 SCD Prospective PR ≥ 50% vs. PR < 50%

Love and Kenney [26] 42 42 SCSA Retrospective SPR > 80% vs. SPR ≤ 80%

Vicente-Fiel et al. [27] 4 4 SCD Retrospective OR 1.4 and 1.7 vs. 0.6 and 0.9

Kenney et al. [66] 54 33 SCSA Retrospective SPR: No history of subfertility vs. history of subfertility
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significance. Consequently, species-specific analyses were 
conducted. Our findings revealed a significant negative 
correlation between SDF and fertility in bulls and stal-
lions, while no such relationship was observed in boars. 
When a combined analysis based on different assay types 
was analyzed, the results demonstrated a significant cor-
relation between SDF and fertility using the SCSA and 
Halomax/SCD tests. In contrast, no such correlation was 

observed with the TUNEL assay. To address potential 
measurement bias arising from the use of multiple assays, 
breeds, or semen incubation times in some studies, the 
correlation values for each method were individually ana-
lyzed in this meta-analysis.

The results revealed high heterogeneity in the stallion 
subgroup analysis and moderate heterogeneity in the 
bull subgroup in the first part. This finding highlights 

Fig. 2  Forest plot showing the results of the overall correlation coefficient between SDF and fertility parameters in farm animals. COR = −0.46, 
p < 0.001, Z-test = −8.97, heterogeneity = 60.5% (p < 0.001)
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Fig. 3  Forest plot showing the correlation coefficient between SDF and fertility in (a) bull (b) stallion and (c) boar. COR = −0.47, p < 0.001, 
Z-test = −11.13, heterogeneity = 39.9% (p = 0.017). COR = −0.54, p < 0.001, Z-test = −3.83, heterogeneity = 74.0% (p < 0.001). COR = −0.19, p = 0.065, 
Z-test = −1.84, heterogeneity = 48.8% (p = 0.058)



Page 8 of 15Abah et al. BMC Veterinary Research          (2025) 21:204 

the study’s limitations and necessitates cautious inter-
pretation. The substantial heterogeneity observed among 
stallions may be attributed to the different fertility meas-
ures used across studies. Various fertility parameters, 
including seasonal pregnancy rate (SPR), pregnancy per 
cycle (PC), and pregnancy per first cycle (FCP), were 
employed. SPR is defined as the percentage of mares that 
become pregnant by a single stallion within the same 
breeding season, calculated as the number of pregnant 
mares divided by the total number of mares bred by that 
stallion in that season. PC is determined by dividing 
the total number of pregnancies by the total number of 
estrous cycles bred, expressed as a percentage. This meas-
ure includes pregnancies diagnosed between 14 and 40 
days of gestation that subsequently resulted in abortion. 
FCP is the percentage of mares diagnosed as pregnant 
following their first breeding of the season, calculated 
as the number of mares pregnant after their first cycle 
divided by the total number of mares confirmed preg-
nant during the breeding season [26]. PC is considered 
a more precise measure of fertility than SPR [66]. The 
use of multiple fertility parameters may have contributed 
to variability in study outcomes, as certain measures do 
not account for intrinsic subfertility in mares. Additional 
factors, including stallion breed, sample size, semen stor-
age method (cooled vs. frozen-thawed), and assay type 
(SCSA vs. Halomax), may also explain the observed het-
erogeneity. The studies included multiple breeds, such 
as Thoroughbred, Warmblood, Standardbred, Trotter, 
and Arabian. This breed variation, along with individual 
stallion and ejaculate differences, likely influenced SDF 
and, consequently, fertility outcomes. Sperm quality has 
been shown to vary across breeds, individual stallions, 

and ejaculates, contributing to discrepancies in fertility 
results [8].

Although the correlation between SDF and fertility 
measures in pigs was not statistically significant, a trend 
toward significance was observed, given the proximity 
of the p-value to the predefined threshold. Therefore, 
this result may not accurately reflect the true relation-
ship due to variability in study design, differences in DNA 
fragmentation assessment methods, and relatively small 
sample sizes in some studies. Thus, we consider this find-
ing inconclusive. The lack of a significant difference in 
combined TUNEL results compared to SCSA and SCD 
is unsurprising. The TUNEL assay is primarily designed 
for somatic cells, and due to the highly compacted nature 
of sperm chromatin, requires potentiators such as dithio-
threitol (DTT) to improve accessibility. Furthermore, the 
large TdT enzyme used in the TUNEL assay can access 
and label only a limited portion of in  situ DNA, which 
may constrain its sensitivity and accuracy in sperm DNA 
fragmentation analysis [70, 71].

The studies in this meta-analysis employed various 
sperm DNA integrity tests, each utilizing different com-
pounds to assess sperm DNA fragmentation. The levels 
of DNA fragmentation detected by these assays are not 
directly comparable, as they rely on distinct principles 
and exhibit varying sensitivities and specificities [70, 71]. 
This methodological variability may partially explain the 
inconsistencies observed among the studies across dif-
ferent species. The SCSA evaluates sperm nuclear DNA 
susceptibility to acid-induced denaturation, which cor-
relates with DNA strand breaks. This is achieved by 
exposing spermatozoa to an acid–detergent solution, 
leading to DNA denaturation at the sites of single-strand 

Table 3  Random-effects model for the correlation between SDF and fertility using (a) SCSA in bulls (b) SCSA in stallions (c) TUNEL in 
bulls (d) Halomax in bulls (e) Halomax in boars

a Random-effects model (k = 13)

Estimate se Z p CI Lower Bound CI Upper Bound
Intercept −0.506 0.0823 −6.15  < .001 −0.667 −0.345

b Random-effects model (k = 6)

Estimate se Z p CI Lower Bound CI Upper Bound
Intercept −0.401 0.0570 −7.04  < .001 −0.513 −0.289

c Random-effects model (k = 3)

Estimate se Z p CI Lower Bound CI Upper Bound
Intercept −0.607 0.304 −2.00 0.046 −1.203 −0.011

d Random-effects model (k = 9)

Estimate se Z p CI Lower Bound CI Upper Bound
Intercept −0.505 0.0429 −11.8  < .001 −0.589 −0.421

e Random-effects model (k = 4)

Estimate se Z p CI Lower Bound CI Upper Bound
Intercept −0.0434 0.115 −0.376 0.707 −0.270 0.183
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or double-strand breaks. AO, a metachromatic dye, is 
then applied, with red fluorescence indicating single-
stranded, denatured DNA and green fluorescence rep-
resenting double-stranded, intact DNA [71, 72]. The 
TUNEL assay detects DNA strand breaks by labeling 
free 3′-OH termini on single- or double-stranded DNA. 
TUNEL employs terminal deoxynucleotidyl transferase, 
which catalyzes the addition of deoxyuridine triphos-
phate (dUTP) to the 3′-OH termini of fragmented DNA. 
The degree of fluorescent or chemical labeling attached 
to dUTP is directly proportional to the number of DNA 
strand breaks [72]. The SCD or Halo assay evaluates 
sperm DNA integrity through a protein depletion treat-
ment, which induces lysis and allows the differentiation 
of fragmented versus intact DNA. Sperm with minimal 
DNA denaturation form large halos of dispersed chro-
matin, indicating intact DNA, whereas fragmented DNA 
exhibits no or minimal halo formation [72]. Despite the 
long-term use of some of these assays, there remains 
debate regarding their predictive value for fertility and 

pregnancy outcomes in mammals, including humans 
[71]. A comparative study in men, bulls, stallions, and 
rams reported a correlation between SCSA and TUNEL 
but indicated that SCSA demonstrated higher sensitivity 
[73]. Another study comparing SCD and SCSA reported 
that SCD exhibited lower repeatability than SCSA [74]. 
Additionally, a study in pigs comparing SCSA, TUNEL, 
and SCD reported a correlation between SCSA and 
TUNEL but not SCD [10]. Each assay presents specific 
advantages and limitations [6]. The present study high-
lights the need for standardization and the adoption of 
a single, validated assay for assessing sperm DNA integ-
rity within or across species. The lack of standardiza-
tion across different sperm DNA fragmentation tests 
can lead to false interpretations of outcomes and affect 
conclusions. Additionally, there is a concern that the tests 
themselves could potentially induce artificial DNA dam-
age [13, 75]. Establishing a standardized method would 
facilitate the determination of a definitive SDF threshold, 
above which an animal may be classified as sub fertile.

Fig. 4  Forest plot showing the results of a meta-analysis of studies comparing the effect of high and low SDF on the fertility parameters in farm 
animals. SMD = 0.85, p < 0.001, Z-test = 10.07, heterogeneity = 40.3% (p = 0.015)
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Fig. 5  Forest plot showing the results of a meta-analysis of studies comparing the effect of high and low SDF on the fertility parameters in (a) 
bulls and (b) stallions. SMD = 1.21, p < 0.001, Z-test = 6.59, heterogeneity = 46.5% (p = 0.018). SMD = 0.64, p < 0.001, Z-test = 6.14, heterogeneity = 0% 
(p = 0.520)

Table 4  Random-effects model for the results of the meta-analysis of studies comparing the effect of high and low SDF on the fertility 
parameters using (a) SCSA in bulls (b) SCSA in stallions (c) Halomax in bulls

Tau² Estimator: Restricted Maximum-Likelihood

a Random-effects model (k = 6)

Estimate se Z p CI Lower Bound CI Upper Bound
Intercept 0.995 0.198 5.03  < .001 0.607 1.382

b Random-effects model (k = 5)

Estimate se Z p CI Lower Bound CI Upper Bound
Intercept 0.644 0.108 5.95  < .001 0.432 0.856

c Random-effects model (k = 6)

Estimate se Z p CI Lower Bound CI Upper Bound
Intercept 1.85 0.595 3.10 0.002 0.680 3.012
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In this study, we present the first systematic analysis of 
the impact of sperm DNA fragmentation (SDF) on male 
subfertility in farm animals. Our results demonstrate a 
significantly higher proportion of SDF in the low-fertil-
ity group compared to the high-fertility group, based on 
the combined data as well as within specific subgroups, 
including bulls, stallions, and assessments using SCSA 
and Halomax/SCD. Several previous original studies 
have reported significant differences in mean SDF levels 
between high- and low-fertility animals [28, 34, 65, 66]. 
While some causes of subfertility and infertility have 
been identified [2, 76], others remain unknown [2, 77]. 
The inability to accurately identify subfertile males and 
remove them from breeding programs has consider-
able economic implications for livestock production and 
horse breeding [2]. Our findings suggest that assessing 
SDF could serve as a valuable tool for identifying subfer-
tile males, thereby enabling the exclusion of low-quality 
ejaculates from breeding programs and improving repro-
ductive efficiency [2]. It is of great interest to note that 
the bull subgroup analysis revealed a high standardized 
mean difference, indicating a substantial distinction 
between high- and low-fertility groups. This finding high-
lights the potential value of incorporating sperm DNA 
integrity testing as a pre-screening tool for bulls. With 
improvements in methodological consistency, standardi-
zation, and increased sample sizes, sperm DNA integrity 
testing in cattle holds significant promise for reducing 
the use of suboptimal sires, thereby enhancing the over-
all success of assisted reproductive technologies (ART) in 
this species.

One of the strengths of systematic reviews is the 
improved precision of the summary outcomes compared 
to individual studies. Subgroup estimates in bulls and 
stallions indicate that sperm DNA damage affects fer-
tility. Evaluating the effect in bull, nine cases showed a 
standard mean difference greater than unity. Five out of 
eight cases in stallions were greater than the combined 
mean difference. Additionally, the combined SDF value in 
the low-fertility group was significantly higher than in the 
high-fertility group, suggesting that a higher proportion 
of DNA fragmentation negatively impacts male fertility. 
However, this meta-analysis has several limitations due to 
the heterogeneous characteristics of the included studies. 
The studies in cattle utilized various fertility measures, 
such as 56-day nonreturn to estrus (NRR56), conception 
rate, pregnancy rate, and estimated relative conception 
rate to classify bulls. Similarly, studies in pigs used differ-
ent methods, including farrowing rate, pregnancy rate, 
and fertility direct boar index. The NRR56 refers to the 
percentage of cows or heifers that do not return to estrus 
within 56 days after AI or natural breeding. Conception 
rate is the percentage of cows that become pregnant 

after being bred, while pregnancy rate is the percentage 
of cows that become pregnant within a specific breed-
ing period, considering both the frequency of breeding 
and the success rate of those breedings. Although these 
parameters may be related, they are not equivalent, and 
some may be subject to bias. This variability may account 
for discrepancies among the studies. Another limitation 
of this study is the use of diverse study designs within 
and between species. The majority of studies were ret-
rospective, which may not have accurately captured the 
true DFI of an individual animal at the time of service 
or insemination. Genotoxic agents may influence sper-
matogenesis, causing fluctuations in DFI over time. Many 
studies assessed SDF in a limited number of males, using 
only a few ejaculates from a single individual. This may 
affect the statistical robustness of those studies. Moreo-
ver, some studies reported a correlation between SDF 
and fertility based on SDF results after incubating the 
semen for several hours. The SDF measured after chilling 
or immediately post-thaw may differ significantly from 
that measured after, for example, 6 h of incubation. The 
SDF in fresh, chilled, or frozen-thawed semen may also 
vary within species. Furthermore, the previously men-
tioned variability in SDF detection methods and fertility 
measures remains a limitation of this study.

Based on the findings of this study, it is evident that the 
impact of sperm DNA fragmentation on livestock fertil-
ity may only be fully recognized and accepted by live-
stock farmers when future research focuses on defining 
species-specific fertility thresholds, standardizing SDF 
assays, and identifying complementary fertility markers. 
To date, and to the best of our knowledge, no established 
fertility threshold for SDF has been reported for any live-
stock species using the TUNEL, SCD, or AO assays. One 
review suggested an estimated threshold above which 
the SCSA DNA fragmentation index (DFI) has a detri-
mental effect on fertility, bulls: 10–20%, horses: ~ 28%, 
and pigs: 6% [71]. However, no specific reference to a 
primary research paper was provided. Establishing a 
fertility threshold for SDF will be critical for integrating 
sperm DNA integrity testing into routine animal semen 
evaluation. The need for assay standardization cannot 
be overemphasized, as there remains an ongoing debate 
regarding the precise definition of DNA integrity and 
the optimal methods for its assessment [72]. Consist-
ency in methodology will be essential for ensuring reli-
able comparisons across studies and facilitating the 
practical application of SDF testing in livestock breeding 
programs.

The present study highlights the importance of evalu-
ating additional sperm quality parameters beyond the 
traditional measures of motility, concentration, and mor-
phology for artificial insemination (AI) or selecting males 
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for AI. While a spermiogram can identify and exclude 
clear cases of male infertility or subfertility and assist in 
determining specific ejaculates for processing [27, 78], 
more subtle changes in sperm quality require advanced 
testing. These advanced tests assess various aspects of 
sperm biology, physiology, and kinematics. In addition 
to SDF, key parameters include velocity metrics [59, 79], 
capacitation status [80, 81], acrosome reaction status [82, 
83], chromatin integrity [2, 59], lipid peroxidation sta-
tus [84], and mitochondrial function [85]. Furthermore, 
recent research has begun to explore additional variables 
such as semen and sperm metabolites, as well as genes 
and proteins potentially involved in subfertility, including 
heat shock proteins [9, 34].

Conclusion
In conclusion, elevated sperm DNA fragmentation 
appears to negatively impact male fertility in bulls and 
stallions. Despite variability in study design characteris-
tics and some relatively small sample sizes, the findings 
of this meta-analysis suggest that incorporating sperm 
DNA fragmentation assays into breeding soundness 
evaluations could enhance the accuracy of selecting high-
quality males for artificial breeding programs. However, 
the impact of elevated sperm DNA fragmentation on 
fertility in farm animals warrants further investigation 
through well-powered studies with robust sample sizes 
and standardized methodologies.

Materials and methods
Identification of the literature
A comprehensive computer literature search was con-
ducted to identify articles dealing with farm animal sperm 
DNA fragmentation to assess male fertility. The PUBMED, 
Google Scholar, and Springer Link databases were searched 
without time restrictions, with a December 31, 2023 cutoff 
date. Key operators used in the systematic search included 
“sperm DNA fragmentation,” “fertility,” “bull,” “boar,” “ram,” 
“buck,” “stallion,” “semen” and “animal.” These key terms 
were employed in combination with the “AND” operator. 
Additionally, references from the acquired studies and a 
review article were manually extracted.

Inclusion and exclusion criteria
When assessing sperm DNA damage, various abnormali-
ties such as defective protamination, chromatin decom-
paction, sperm DNA fragmentation, and impaired DNA 
cross-linking are typically measured. In this systematic 
review, only studies that looked into sperm DNA frag-
mentation in farm animals were included. Studies deal-
ing with sperm chromatin compaction impairment were 
excluded from the meta-analysis. Studies were included 
if they measured the relationship between sperm DNA 

fragmentation and fertility in the bull, stallion, boar, ram, 
and goats. The outcomes of interest were non-return to 
estrus rate (NRR), pregnancy rate (PR), or farrowing rate.

The inclusion criteria comprised studies that assessed 
sperm DNA damage using the most commonly employed 
methods, including SCSA, TUNEL, SCD/Halomax, 
Comet assay, and AO assays; studies reporting natural 
or artificial insemination in females; articles published 
in English; and both retrospective and prospective study 
designs. Studies evaluating the effect of sperm DNA frag-
mentation in vitro (e.g., on IVF or ICSI outcomes), those 
using sorted sperm, and studies with unspecified designs 
were excluded.

Data extraction
Eligible studies were selected through a two-step pro-
cess. Initially, the titles and abstracts of articles identified 
through the electronic search were reviewed. Full articles 
of citations that met the predetermined selection criteria 
were then obtained. Subsequently, the full articles were 
examined, and relevant studies were selected. For each 
publication, the extracted data included the name of the 
first author, species of the animal, year of publication, 
sperm DNA assay type, sample size (control, experimen-
tal, and total), study design (prospective, retrospective, 
or unknown), and semen type (fresh, frozen-thawed, 
chilled, or liquid-stored). To assess the association 
between sperm DNA fragmentation and male fertility, 
Pearson or Spearman correlation coefficient values were 
recorded for each study. The mean and standard devia-
tion (SD) SDF values in the high and low fertility groups 
were also recorded.

Statistical analysis
The correlation coefficient between SDF and fertility param-
eters was analyzed using Jamovi software (version 2.3.21, 
The Jamovi Project) and R (version 4.4.3). The mean and 
standard deviation (SD) of SDF in studies comparing high 
and low fertility groups were also entered into the software 
programs. A meta-analysis was conducted using a random-
effects model where appropriate. R software generated for-
est plots, while Jamovi was employed for random-effects 
model tables. Heterogeneity across studies was assessed 
using the I² statistic, which quantifies variability in effect 
sizes [86]. Potential sources of heterogeneity were explored 
by examining variations in population characteristics and 
exposure factors. Studies were subgrouped based on animal 
species and the assays used for SDF measurement, including 
SCSA, TUNEL, SCD, Comet, and AO. Publication bias was 
assessed through funnel plot analysis, and asymmetry in the 
primary outcome was visually evaluated [87]. A significance 
level of p < 0.05 was applied to all statistical tests. 
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