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Abstract 

Background Myxomatous mitral valve disease (MMVD) represents the most prevalent cardiac disorder in dogs, 
frequently resulting in mitral regurgitation (MR) and congestive heart failure. Although echocardiography is the gold 
standard for diagnosis, it is an expensive tool that involves significant clinical training to ensure consistent applica‑
tion. Deep learning models offer an innovative approach to assessing MR using digital stethoscopic recordings, 
enabling early screening and precise prediction. Thus, in this study, we evaluated the effectiveness of a convolutional 
neural network 6 (CNN6) in providing an objective alternative to traditional methods for assessing MR. This study, 
conducted at the Seoul National University Veterinary Medicine Teaching Hospital, included 460 dogs with MMVD, 
classified according to the American College of Veterinary Internal Medicine guidelines. Phonocardiogram signals 
were recorded using digital stethoscopes and analyzed using the deep models CNN6, patch‑mix audio spectrogram 
transformer (PaSST), and residual neural network (ResNET38), which were trained to categorize MR severity into mild, 
moderate, and severe based on MINE score. Performance metrics were calculated to evaluate model effectiveness.

Results The CNN6‑Fbank model achieved an accuracy of 94.12% [95% confidence interval (CI): 94.11–93.12], speci‑
ficity of 97.30% (95% CI: 97.30–97.34), sensitivity of 94.12% (95% CI: 93.74–94.50), precision of 92.63% (95% CI: 92.29–
92.97), and F1 score of 93.32% (95% CI: 93.05–93.59), outperforming the PaSST and ResNet38 models overall and dem‑
onstrating robust performance across most metrics.

Conclusions Deep learning models, particularly CNN6, can effectively assess MR severity in dogs with MMVD using 
digital stethoscope recordings. This approach provides a rapid, noninvasive, and reliable adjunct to echocardiography, 
potentially enhancing diagnosis and outcomes. Future studies should focus on broader clinical validation and real‑
time application of this technology.
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Background
Myxomatous mitral valve disease (MMVD) is the most 
prevalent cardiac condition in dogs, accounting for 
approximately 75% of heart disease cases in small-to-
medium-sized breeds [1], and can lead to mitral regurgi-
tation (MR) and congestive heart failure (CHF). MMVD 
is characterized by the thickening and elongation of the 
mitral valve leaflets and chordae tendineae [1]. Its clinical 
presentations vary widely, ranging from asymptomatic 
to severe heart failure, with disease progression being 
notably unpredictable [1–3]. Early detection and accurate 
assessment of MR are crucial for effective management 
and treatment and significantly affect the health and 
quality of life of affected dogs [4, 5].

MR resulting from MMVD is a major contributor 
to cardiovascular morbidity in dogs, underscoring the 
need for meticulous monitoring [6]. The progression of 
MMVD is closely associated with factors such as age, 
MR severity, and degree of valvular degeneration [7–10]. 
Notably, findings from human cardiology studies sug-
gest that precise assessments of regurgitant volume and 
effective orifice area may predict the onset of CHF [11] in 
dogs, emphasizing the critical role of MR monitoring in 
the effective management of MMVD.

The American College of Veterinary Internal Medicine 
(ACVIM) guidelines are commonly used to clinically 
classify dogs with MMVD [4]. While the ACVIM classi-
fication is widely used to stage dogs with MMVD, it does 
not provide a quantitative assessment of MR severity. To 
address this, the Mitral INsufficiency Echocardiographic 
(MINE) score was recently proposed as a simple, objec-
tive tool incorporating four echocardiographic param-
eters—LA/Ao ratio, LVIDDn, fractional shortening (FS), 
and E-wave peak velocity. The MINE score has been 
associated with survival outcomes and may complement 
existing staging systems by offering additional prognostic 
 information2. Echocardiographic assessment is essential 
for understanding the clinical and hemodynamic status, 
aiding in the prediction of CHF [12, 13] and the evalua-
tion of patient prognosis [14]. Echocardiography remains 
the gold standard for diagnosing and monitoring MR 
severity and provides essential information on valve mor-
phology, regurgitation volume, and ventricular function.

In the echocardiographic evaluation of MMVD sever-
ity in dogs, assessments include evaluation of cardiac 
remodeling. This is indicated by definitive criteria, 
including enlargement of left atrium and ventricle. Con-
versely, MR quantification is evaluated through several 
metrics: regurgitation jet size via color Doppler, effec-
tive regurgitant orifice area, proximal isovelocity surface 
area, vena contracta width, and regurgitant fraction [13, 
14]. Furthermore, estimation of left ventricular filling 
pressure is achieved by analyzing mitral inflow patterns, 

isovolumetric relaxation time, pulmonary venous flow, 
regurgitant jet profiles, and various tissue Doppler echo-
cardiographic variables [12, 15]. However, many of these 
methods are time-consuming, require multiple measure-
ments, and are subject to method- and operator-depend-
ent errors (intraobserver and interobserver variability), 
necessitating the skill of a well-trained operator [2]. Con-
sequently, simpler and less technically demanding meth-
ods applicable to veterinary practice would be useful [16].

Auscultation, the practice of detecting mechanical 
vibrations from the body surface within an audible fre-
quency range, is affected by variability owing to fac-
tors such as age-related hearing decline and differences 
in professional training [17]. Additionally, traditional 
stethoscopes are limited by human auditory constraints, 
including a lack of sensitivity to low frequencies, slow 
reactions to brief sonic events, and masking of softer 
sounds by louder nearby noises [17]. In human medicine, 
the diagnostic prominence of auscultation has decreased 
with the increase in coronary artery disease, reduction 
in rheumatic valvular disease, and widespread use of 
advanced cardiac imaging techniques such as Doppler 
echocardiography [18]. Conversely, in veterinary cardiol-
ogy, valvular heart diseases such as MMVD are common, 
highlighting the continued significance of auscultation. 
Nonetheless, a weak correlation remains between sys-
tolic murmur intensity and the severity of regurgitation 
in dogs [19, 20].

Phonocardiography (PCG) research has shown that 
MR in dogs leads to changes in heart sounds beyond 
murmurs [21], with significant findings related to the S3 
sound [22–24] and increased intensity of the S1 sound in 
cases of MR [25, 26]. These findings indicate the potential 
of artificial intelligence (AI)-assisted digital stethoscopes 
for detecting sounds inaudible to the human ear. The 
development of AI-assisted digital auscultation technol-
ogy offers the promise of overcoming traditional auscul-
tation challenges by providing more accurate assessments 
of MR severity through the analysis of audible and infra-
sonic PCG data [27]. Although this technology is not 
widely used in veterinary practice, it has the potential to 
significantly improve MR evaluation in dogs, serving as 
a valuable complement to traditional echocardiography.

Digital stethoscopes represent a significant advance-
ment in enabling the recording and digital analysis of 
heart sounds. These devices can store heart sounds for 
later analysis, facilitate the sharing of recordings with 
specialists for second opinions, and use software to ana-
lyze sounds for MR characteristics [28]. In human medi-
cine, digital stethoscopes have demonstrated improved 
diagnostic outcomes in human medicine, particularly in 
noisy clinical environments [29]. Similarly, in veterinary 
practice, digital stethoscopes can improve the accuracy 
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of cardiac assessments by providing objective data and 
minimizing interobserver variability. Thus, this technol-
ogy holds significant promise in enhancing human and 
veterinary cardiology by providing more precise and reli-
able diagnostic outcomes.

The integration of Artificial Intelligence (AI) and deep 
learning with digital stethoscopes further enhances their 
diagnostic potential. AI algorithms, trained on large 
datasets, are capable of accurately predicting disease out-
comes and supporting in clinical decision-making [30, 
31]. In the context of MMVD, AI has been employed 
to analyze echocardiographic data and heart sounds, 
providing a nuanced understanding of disease progres-
sion [32]. For example, AI algorithms have successfully 
detected and classified heart murmurs in humans, dif-
ferentiating between benign and pathological murmurs 
[33]. The application of AI in veterinary medicine is 
becoming increasingly diverse, encompassing the detec-
tion of canine hyperadrenocorticism, classification of 
various forms of cancer, identification of retinal atrophy, 
assessment of cardiac enlargement, assistance in radiol-
ogy, and prediction of seizures in epileptic dogs [34–37]. 
The diagnostic potential in canine patients can be consid-
erably increased by utilizing these developments in vet-
erinary medicine [28].

In this study, therefore, we aimed to develop an assis-
tive tool using deep learning algorithms to evaluate the 
severity of MR in dogs diagnosed with MMVD using dig-
ital stethoscopic recordings. We hypothesized that these 
algorithms could reliably interpret heart-sound record-
ings, offering a noninvasive and accessible method to 
assist veterinarians in grading MR severity.

Methods
Clinical study design
This study was conducted at the Seoul National Uni-
versity Veterinary Medicine Teaching Hospital (SNU 
VMTH) between May 2022 and August 2023. Eligible 

dogs were those with a confirmed diagnosis of MMVD, 
accompanied by comprehensive echocardiographic 
reports and informed consent obtained from their 
owners. Prior to participation, the owners received 
detailed information regarding the objectives of the 
study and data utilization. All experimental proto-
cols were approved by the Institutional Animal Care 
and Use Committee of Seoul National University 
(SNU-220602–1–2). The study was conducted in strict 
accordance with the Korean Animal Protection Act and 
the regulatory guidelines of Seoul National University.

Heart sounds were recorded using the WP-100 digi-
tal stethoscope by WITHaPET, which connects to a 
mobile device via Bluetooth. The recordings were col-
lected through the WITHaPET application, a propri-
etary software developed by the WP-100 manufacturer 
for acquiring and storing heart and lung sounds. The 
WP-100 utilizes a digital MEMS microphone to cap-
ture high-quality auscultation sounds, which were 
then processed into PCGs. Subsequently, the PCGs 
were employed as the primary input for a deep learn-
ing-based classifier to assess the MR severity. Con-
currently, the mitral insufficiency echocardiographic 
(MINE) score [2], an echocardiographic metric that 
predicts prognosis and survival by correlating higher 
scores with increased cardiac risk, was used to classify 
the MR severity into mild, moderate, severe, and late 
stages(Fig.  1). Further methodological details are pre-
sented in the following sections.

The classifier, developed using deep learning models, 
analyzed PCG signals to classify the MR severity. Fea-
tures extracted from the PCG signals were employed 
in classification algorithms to predict the severity of 
MR with high accuracy. The classifier performance was 
evaluated using statistical techniques, including the 
calculation of accuracy, specificity, sensitivity, preci-
sion, and F1 score.

Fig. 1 Overview of deep learning‑based analysis for mitral regurgitation severity in myxomatous mitral valve disease patients. This figure describes 
a systematic approach for collecting, preprocessing, and analyzing PCG data from dogs with MMVD to classify MR severity of mitral regurgitation. 
Data were acquired using a digital stethoscope and preprocessed, visualized, and analyzed using deep learning models. CNN, convolutional neural 
network; Fbank, filter bank; MMVD, myxomatous mitral valve disease; PaSST, patch‑mix audio spectrogram transformer; PCG, phonocardiogram; 
ResNet, residual neural network
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Comprehensive data collection and evaluation 
methods
Variables collected
Clinical records from the SNU VMTH were collected 
from the dogs enrolled in the study. The study partici-
pants underwent comprehensive evaluations, including 
physical examinations, chest radiography, and echocardi-
ographic assessments. The extracted data included breed, 
sex, age, body condition score, and echocardiographic 
measurements. While ACVIM staging was used to define 
the study population, it was not employed as a variable in 
the analysis or severity classification. The ACVIM classi-
fication system has been verified and updated in accord-
ance with the most recent guidelines [4].

Stethoscope recordings
Heart sounds were recorded by trained veterinary practi-
tioners using a standardized procedure to ensure consist-
ency among all participants. Every dog participated in a 
30-s session of PCG recordings while standing. Record-
ings were acquired from four standard auscultation posi-
tions corresponding to the major cardiac valves: aortic, 
mitral, pulmonary, and tricuspid. Efforts were made to 
ensure that each patient remained calm and still, show-
ing no indications of rapid breathing or trembling, to 
optimize the efficiency of sound capture. Auscultatory 
recordings were reviewed by the study investigators for 
quality control. The study personnel performing algo-
rithm development were unaware of the detailed echo-
cardiographic information. The specific auscultation sites 
were as follows.

(a) Mitral valve: 5 th intercostal space at the costochon-
dral junction of the left apex.

(b) Aortic valve: precisely above the costochondral 
junction in the 4 th intercostal space.

(c) Pulmonary valve: between the 2nd and 4 th inter-
costal space positioned just above the sternum.

(d) Tricuspid valve: between the 3rd and 5 th intercos-
tal space near the costochondral junction.

Before each recording, the stethoscope was carefully 
positioned at each site to confirm the precise location of 
the valves. Cardiac sounds were methodically recorded 
from left to right at the correct locations.

Echocardiographic data
Echocardiographic examinations were performed on the 
canines by clinicians at the Department of Radiology at 
SNU VMTH. These examinations used phased-array 
transducers with a frequency range of 2–9 MHz and 
single-lead electrocardiography simultaneously. Imaging 

was performed from right and left parasternal views 
using two-dimensional, M-mode, and Doppler imaging 
techniques [38].

The MINE scoring system, which integrates four key 
echocardiographic metrics, was used to assess the sever-
ity of MR: (a) left atrium to aorta ratio, obtained from the 
right parasternal short-axis view [39]; (b) left ventricu-
lar end-diastolic diameter normalized for body weight, 
obtained in M-mode from the same perspective [39]; (c) 
left ventricular fractional shortening, measured in a simi-
lar manner [40]; and (d) peak E-wave transmitral flow 
velocity, measured by pulsed-wave Doppler from the left 
apical four-chamber view [12].

Digital stethoscope specification
A WP-100 digital stethoscope was used for auscultation. 
This device features Bluetooth BLE 5.0, which facilitates 
seamless wireless data acquisition. Equipped with a USB 
C-type connector, the WP-100 utilizes MEMS micro-
phones as its primary sensors. The stethoscope oper-
ates in two modes optimized for different frequency 
ranges:"Heart Mode"(50–300 Hz) and"Lung Mode"(100–
1200 Hz). For direct auscultation, audio was recorded 
in a 16 kHz, mono, 16-bit PCM format. When using the 
companion application for auscultation or AI analysis, 
the audio was converted to an 8 kHz, mono, 16-bit PCM 
format to ensure compatibility with the application’s ana-
lytical tools.

Deep learning algorithms
Audio recordings were collected using the WP-100 
digital stethoscope to develop a deep learning-based 
MR assessment model. In total, 1,840 audio files were 
obtained from 460 patients, resulting in over 14 h of 
data from four heart positions per patient. The dataset 
was then divided into a 7:2:1 ratio, with 321, 92, and 47 
patients allocated to the training, validation, and test sets, 
respectively. This split was based on the conventional 
practice of splitting datasets into a 7:3 ratio for training 
and testing, with the test set further divided into valida-
tion and test subsets. Stratified random sampling was 
employed to ensure a balanced class distribution across 
these sets. The label distributions for mild, moderate, 
and severe cases were as follows: 18.3%, 45.8%, and 35.9% 
in the training set; 18.2%, 41.1%, and 40.8% in the vali-
dation set; and 13.8%, 48.2%, and 38.0% in the test set, 
respectively. The hold-out method was used, wherein the 
validation set monitored the classification performance 
during training, and the test set was reserved for the final 
evaluation of the model. The model training and evalua-
tion were performed using the computational resources 
detailed in [Additional File 1].
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The preprocessing pipeline involved segmenting the 
audio recordings into fixed-length segments of 8  s to 
ensure uniformity of the input data. Each segment was 
then transformed into feature representations using 
either filter bank (Fbank) features or mel spectrograms 
based on the specified parameters. The transformation 
parameters, which were consistent for the Fbank and 
mel spectrogram approaches, included a sample rate of 
8,000 Hz, FFT(Fast Fourier transform) size of 1024, 64 
mel bands, window length of 1024, and frequency limits 
of 10–500 Hz. Standard normalization techniques were 
applied to the audio signals prior to transformation to 
enhance signal quality and ensure consistency. This nor-
malization, performed automatically by a function in 
Torchaudio, scales the values within the range of −1.0 to 
1.0. Subsequently, the transformation was implemented 
to capture the essential frequency characteristics of heart 
sounds while minimizing noise and irrelevant variations.

Three deep learning models were investigated: convo-
lutional neural network (CNN6), residual neural network 
(ResNet38), and patch-mix audio spectrogram trans-
former (PaSST). The CNN6 architecture processes the 
input features through several convolutional layers with 
5 × 5 kernels, each followed by batch normalization (BN) 
and rectified linear unit (ReLU) activation functions. The 
convolutional layers had increasing filter sizes of 64, 128, 
256, and 512, with max-pooling layers of a 2 × 2 kernel 
size used after each convolutional block to reduce the 
spatial dimensions. A global pooling layer aggregated the 
feature maps before passing them to a fully connected 
classifier layer (Fig. 2, Additional File 2 (A)).

The ResNet38 architecture adhered to the standard 
ResNet architecture with multiple residual blocks. Each 
block comprises convolutional layers with 3 × 3 kernels, 
BN, and ReLU activation. The filter sizes progressively 
increased, and the network included downsampling and 
identity connections. Global pooling was applied at the 
end of the network before a fully connected classifier 
layer was applied [Additional File 2 (B)].

The PaSST architecture incorporates a transformer-
based architecture featuring a linear projector to trans-
form the input features, followed by multiple transformer 
encoder layers to capture long-range dependencies and 
temporal patterns in the data. A fully connected classifier 
layer was used for the final classification [(Additional File 
2 (C)].

Each network’s output layer comprised a fully con-
nected layer, followed by three outputs normalized to 
a probability distribution via a softmax function. The 
networks were initialized with random weights and 
optimized using the Adam optimizer. The training was 
conducted with an initial learning rate of 0.0005 and a 
batch size of eight over a fixed number of epochs, with 

early stopping based on validation loss to prevent over-
fitting. Cross-entropy loss was utilized for all training 
experiments.

The end-to-end algorithm classified inputs into one of 
three possible outputs—mild, moderate, or severe—indi-
cating the stage of MR. The final evaluation of the test set 
provided a comprehensive assessment of the effective-
ness of each model for classifying MR severity.

Performance evaluation
Five classification metrics (accuracy, sensitivity [recall], 
specificity, precision, and F1 score) were employed to 
evaluate the performance of the deep learning model 
for diagnosing the severity of MR in canine patients. 
Macro-averaging was used for the sensitivity, specificity, 

Fig. 2 The architecture of the deep learning model for evaluating 
mitral regurgitation severity. This diagram illustrates how a deep 
learning model analyzes heart‑sound data to categorize the intensity 
of heart murmurs in dogs. The model uses spectrogram data 
analyzed by a CNN6 model to determine murmur severity 
and categorizes it as mild, moderate, or severe. The layer details 
of the model are presented on the right. CNN, convolutional 
neural network; Fbank, filter bank; CE, cross‑entropy; MR, mitral 
regurgitation; BN, batch normalization; ReLU, rectified linear unit; FC, 
fully connected
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precision, and F1 score to ensure that each class was 
given equal importance, providing a balanced view of the 
model’s effectiveness across all categories. These metrics 
provide a thorough evaluation of the model’s perfor-
mance across different aspects without introducing bias 
[41].

Statistical analysis
Data analysis and visualization were performed in Python 
3.10 using the standard packages NumPy 1.21.5, Pandas 
1.5.2, Seaborn 0.12.2, Matplotlib 3.7.1, Scikit-learn 1.3.0 
and Torchaudio 2.0.0. Statistical analyses, including the 
calculation of standard deviation and computation of 
95% confidence intervals (CIs) and receiver operating 
characteristic (ROC) curves, were performed using the 
scikit-learn library, Torchmetrics 1.12, and Microsoft 
Excel 2021.

Results
Data analysis process and participant characteristics
This study utilized a systematic approach to collect, 
preprocess, and analyze the PCG data from dogs with 
MMVD. Data were acquired using a digital stethoscope, 
followed by preprocessing to clean and format the data 
for analysis. The data were then visualized and analyzed 
using deep learning models, including Fbank, PaSST, 
ResNet38, and CNN6 (Fig. 1).

Participant selection involved 480 potential candidates; 
460 were deemed eligible. Exclusions were based on two 
main criteria: missing echocardiographic data and inade-
quate signal quality (Fig. 3). Inadequate signal quality was 
identified through the detection of ambient noise, such 
as talking, friction sounds from patient movement dur-
ing measurements, or incomplete recordings where data 
were not captured in all the necessary positions. Miss-
ing echocardiographic data referred to instances wherein 
the essential values required for the MINE score [2] were 
unavailable; this could be owing to challenges in per-
forming a full echocardiogram—such as a lack of patient 
cooperation—specific requests from the owners, or other 
procedural limitations.

The remaining 460 recordings were labeled using the 
MINE score and categorized into mild (n = 75), moderate 
(n = 216), and severe (n = 169) cases. The enrolled dogs 
were categorized into ACVIM stages as follows: 139 in 
stage B1, 171 in stage B2, 132 in stage C, and 18 in stage 
D. These stages were used soley to define the study popu-
lation and were not utilized for severity classification. 
The cohort had a mean age of 10.3 ± 3.1 years and a mean 
body condition score of 5.5 ± 1.2. Demographic and clini-
cal characteristics are presented in Table  1. For model 
development, the dataset was partitioned into training, 
validation, and test sets.

Model architecture and performance
The architecture of the deep learning model for analyz-
ing heart-sound data includes several critical compo-
nents (Fig.  2). The model processes spectrogram data 
through multiple layers, starting with the input layer. 
The input audio, sampled in the range of 10–1200 Hz, 
is segmented into fixed lengths of 8  s, and each seg-
ment undergoes preprocessing steps such as normaliza-
tion performed automatically by a function provided by 
Torchaudio, which scales values within a range of −1.0 
to 1.0 when the audio file is loaded. These preprocessed 
audio segments are then transformed into feature repre-
sentations using either filter banks or mel-spectrograms, 
providing the input features required for deep learning. 
The convolutional layers extract features from the spec-
trogram, with each layer followed by a ReLU activation 
function to introduce nonlinearity into the model. These 
convolutional layers progressively capture the more com-
plex features of heart-sound data. BN layers are included 
after the convolutional layers to normalize the output 
and improve training stability and speed. After extrac-
tion, the fully connected layers interpret the features to 
make final predictions by combining the features learned 
by the convolutional layers and outputting the classifica-
tion probabilities. The final fully connected layer outputs 
the classification results as mild, moderate, or severe.

The features used in our deep learning model are auto-
matically extracted by the deep learning architecture 
during training. The raw PCG signals, after preprocessing 
and transformation into feature representations, serve 
as input to the model. PCG traces in the time domain 
and their corresponding power spectral density plots 
were examined to determine the different MR severity 
levels. The deep learning model leverages convolutional 
layers to identify and extract hierarchical patterns from 
these representations that are indicative of MR severity. 
No additional variables or manually engineered features 
were introduced to the algorithm. Instead, the model 
learns relevant features directly from the input data dur-
ing training, optimizing classification performance. This 
approach aligns with modern practices in deep learning, 
where feature extraction is seamlessly integrated into the 
training process rather than relying on predefined statis-
tical or signal-based features. Figure  4 shows examples 
categorized as normal (Fig. 4A), mild (Fig. 4B), moderate 
(Fig. 4C), and severe (Fig. 4D). These examples illustrate 
the variations in PCG signals corresponding to different 
MR severities, highlighting the distinct patterns used by 
the model to differentiate between severity levels.

The classification accuracies of the three audio pro-
cessing models—CNN6, PaSST, and ResNet38—using 
Fbank and mel spectrogram features showed that CNN6 
achieved the highest accuracy with Fbank features, with 
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an average accuracy of 94.12% (95% Cl: 94.11–93.12). 
These results indicate that regarding accuracy, CNN6 
was superior, followed by PaSST and ResNet38 (Fig. 5A). 
Additional performance metrics for the CNN6, PaSST, 
and ResNet38 models using the Fbank and mel spec-
trogram features are summarized in Table 2. The CNN6 
model demonstrated the highest overall performance, 
particularly with Fbank features, achieving a specificity 
of 97.30% (95% CI: 97.30–97.34), sensitivity of 94.12% 
(95% CI: 93.74–94.50), precision of 92.63% (95% CI: 
92.29–92.97), and F1 score of 93.32% (95% CI: 93.05–
93.59). PaSST and ResNet38 had specificities of 96.75% 
(95% CI: 96.74–96.75) and 96.80% (95% Cl: 96.80–98.81), 

sensitivities of 90.34% (95% CI: 89.94–90.74) and 88.27% 
(95% CI: 87.85–88.69), precision scores of 89.45% (95% 
CI: 88.81–90.09) and 86.78% (95% CI: 86.20–87.36), and 
F1 scores of 89.89% (95% CI: 89.48–90.30) and 87.52% 
(95% CI: 87.20–87.84), respectively.

This table quantifies the performance of three distinct 
deep learning models—CNN6, PaSST, and ResNet38—
utilizing two audio feature extraction methods: Fbank 
and mel spectrograms. The performance metrics are 
reported as the mean ± standard deviation for each 
model-feature combination. The bold values represent 
the highest observed metrics across the models for each 
feature type.

Fig. 3 Participant selection and workflow for deep learning model development. The flowchart illustrates the process of collecting and analyzing 
heart‑sound data for the assessment of the severity of mitral regurgitation in participants. Of note, the severe group initially included 167 
cases; however, later in the study, two cases previously classified as late‑stage were merged into the severe group owing to their small sample 
size. The recordings were then segmented into training, test, and validation datasets for model development. MINE score, mitral insufficiency 
echocardiographic score
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CNN, convolutional neural network; Fbank, filter 
bank; PaSST, patch-mix audio spectrogram transformer; 
ResNet38, residual neural network.

The performance of the model was evaluated using a 
confusion matrix that illustrated the performance of the 
CNN6-Fbank model in classifying MR severity, demon-
strating high accuracy; most instances fell along the diag-
onal. The deep learning model successfully classified 92% 
of the mild cases, 94% of the moderate cases, and 97% of 
the severe cases, indicating its robust capability to accu-
rately identify each severity level. The consistently high 
performance across all classes demonstrates the effec-
tiveness of the model in distinguishing between different 
MR severities (Fig. 5B). Additionally, the predictive abil-
ity of the model was assessed using the ROC curve, yield-
ing area under the curve values of 0.97, 0.98, and 0.99 for 
mild, moderate, and severe stages, respectively, further 
demonstrating the model’s exceptional discriminative 
power (Additional File 3).

The training and validation accuracy curves of the deep 
learning model are depicted in Fig.  6, illustrating the 
model’s performance throughout the training process. 
The training accuracy exhibited a steady upward trend, 
ultimately achieving a final accuracy of 0.98, whereas the 
validation accuracy consistently improved, stabilizing at 
0.95 by the final epoch. These findings indicate that the 
model effectively avoids overfitting and demonstrates 
strong generalization capabilities to unseen data, ensur-
ing high performance across training and validation 
datasets.

The results highlight the potential of deep learning 
models in clinical settings, suggesting that their integra-
tion into routine practice could substantially enhance the 
management and prognosis of dogs with MMVD.

Discussion
In this study, we introduced a novel approach that inte-
grates deep learning models with digital stethoscopic 
recordings to evaluate MR severity in dogs with MMVD. 
Our findings highlight the potential of heart sound 
recordings—specifically PCG signals—as primary data 
sources for classification, representing a significant 
advancement in veterinary cardiology. The relationship 
between heart murmur and MR [21] and its connection 
to MMVD severity [42] has been previously explored, 
offering insights into how acoustic characteristics relate 
to disease severity. Although murmur intensity is useful 
for identifying disease stages, it has limitations owing 
to overlapping categories, particularly in moderate and 
loud murmurs, which reduce its reliability in track-
ing disease progression. Building on this context, we 
applied deep learning techniques to PCG signals, fur-
ther validating the utility of phonocardiographic data in 

Table 1 Characteristics of study subjects

Data for overall age, body condition score, and echocardiographic 
measurements are presented as mean ± SD. Numbers (percentages) are 
presented for specific categories of sex, neuter state, breed, age, and body 
condition scores. Subjects were categorized as mild, moderate, or severe, with 
late cases combined owing to the small sample size. Breeds included in the 
“others” category comprised Miniature pinschers and Italian greyhounds

Characteristics All Subjects Mild Moderate Severe

Total subjects 460 75 216 169

Sex

 Male 262 68 100 94

 Female 198 7 116 75

Neuter State

 Intact 24 9 6 9

 Neutered 436 66 210 160

Breed

 Maltese 126 28 37 61

 Pomeranian 96 8 47 41

 Poodle 50 10 26 14

 Shih‑Tzu 50 4 23 23

 Chihuahua 35 2 20 13

 Cocker 
Spaniel

3 ‑ 2 1

 Pekinese 11 ‑ 11 ‑

 Spitz 8 ‑ 4 4

 Schnauzer 8 3 5 ‑

 Dachshund 15 9 4 2

 Bichon Frise 4 ‑ ‑ 4

 Coton de 
Tulear

4 ‑ 4 ‑

 Yorkshire 
Terrier

3 ‑ 3 ‑

 Mixed 45 10 29 6

 Others 2 1 1 ‑

Age

 mean ± SD, y 12.12 ± 4.92 11.30 ± 2.43 12.45 ± 2.79 12.6 ± 2.28

 < 7, y 13 4 5 4

 7–9 y 42 8 24 10

 9–11 y 76 18 38 20

 11–13 y 114 24 46 44

 13–15 y 138 13 59 66

 > 15, y 70 6 41 23

Body Condition Score

 mean ± SD 5.02 ± 1.30 5.15 ± 1.51 5.07 ± 1.38 4.90 ± 1.07

 1–3 48 12 25 11

 4–6 341 45 153 143

 7–9 64 16 35 13

Echocardiography

 mean ± SD 7.04 ± 1.91 4.48 ± 0.50 6.38 ± 0.48 9.10 ± 1.19

 LAAo 1.72 ± 0.36 1.48 ± 0.12 1.55 ± 0.24 2.04 ± 0.32

 LVIDDn 1.59 ± 0.63 1.34 ± 0.21 1.48 ± 0.27 1.84 ± 0.24

 FS (%) 58.66 ± 26.22 42.01 ± 5.99 58.95 ± 9.73 62.59 ± 9.78

 E‑peak 0.96 ± 0.29 0.77 ± 0.19 0.85 ± 0.20 1.18 ± 0.28
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assessing MR. Although not intended to replace echo-
cardiographic assessments, the proposed system offers a 
valuable tool for early screening and disease prediction, 
offering an accessible, cost-effective approach that may 
provide informative input for clinical decision-making 
in dogs with MMVD. It should be noted that this predic-
tion model does not incorporate ACVIM staging, which 
remains the primary framework currently used to guide 
therapeutic decisions. The CNN6 architecture demon-
strated particularly superior accuracy in classifying MR 
severity levels, outperforming contemporary models 
such as PaSST and ResNet38. This methodological inno-
vation democratizes diagnostic processes and enhances 
the feasibility and efficiency of MR severity assessment, 
potentially broadening access to advanced diagnostic 
capabilities in diverse clinical settings.

This study further distinguishes itself by focusing on 
algorithms specifically designed for canine MMVD 
patients, in contrast to previous research that utilized 
human-trained recurrent neural networks for heart 

murmur detection [43]. A notable methodological dis-
tinction lies in the representation of phonocardiographic 
data: although previous study employed log-spectrogram 
features, our study used Fbank representations. This 
study builds on previous research in heart sound analysis 
by applying deep learning models to veterinary diagnos-
tics, demonstrating their adaptability to address various 
diagnostic challenges in the field.

In human medicine, deep learning models have been 
successfully applied to the analysis of heart sounds and 
echocardiographic data, thereby providing enhanced 
diagnostic capabilities. For instance, research has dem-
onstrated the efficacy of deep learning models in iden-
tifying arrhythmias from electrocardiographic (ECG) 
data, underscoring their potential for improving cardiac 
diagnostics [44]. The use of digital stethoscopes com-
bined with AI for diagnosing heart conditions has also 
been well-documented [45]. Studies demonstrating the 
high accuracy of deep learning models in classifying 
heart murmurs suggest that these methodologies can 

Fig. 4 Examples of filter banks. The phonocardiogram trace in the time domain and its power spectral density demonstrate different levels of mitral 
regurgitation severity, categorized as (A) normal, (B) mild, (C) moderate, and (D) severe
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also be effectively applied in veterinary medicine [46]. A 
recent study demonstrated the application of a machine-
learning algorithm, originally trained on human data, 

to canine patients with cardiac disease, effectively grad-
ing heart murmurs and distinguishing preclinical stages 
of MMVD [43]. Despite these promising developments, 

Fig. 5 Performance evaluation of deep learning models. A. Classification accuracies achieved by individual models in evaluating mitral 
regurgitation severity. This graph shows the accuracy of three audio processing models—CNN6, PaSST, and ResNet38—using two types of features 
to analyze audio data: Fbank and mel spectrograms. Each set of bars illustrates the accuracy results for each model, with lighter shades representing 
Fbank and darker shades representing mel spectrograms. Standard deviations are indicated by error bars. B. Confusion matrix for CNN‑based mitral 
regurgitation classification. The confusion matrix depicts the performance of our CNN in classifying the severity of mitral regurgitation. The true 
severity levels are plotted on the y‑axis, and the predicted severity levels are plotted on the x‑axis. Each cell contains the percentage of instances 
for each predicted true‑label pair. CNN, convolutional neural network; Fbank, filter bank; PaSST, patch‑mix audio spectrogram transformer; ResNet, 
residual neural network
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integration of such advanced technologies into routine 
veterinary practice remains limited. Our study highlights 
the potential of deep learning models to reduce the skill 
level required for accurate auscultation, enabling earlier 
detection of disease progression, and offering a practical, 
accessible tool to support clinical decision-making in the 
management of MMVD.

In this study, we evaluated the effectiveness of the 
CNN6, ResNet38, and PaSST models in conjunction 
with Fbank and mel spectrograms for transforming 
time domain data into frequency domain representa-
tions. The experimental findings revealed that when 
paired with Fbank, the CNN6 model outperformed the 
other model-feature combinations. CNN6 effectively 
analyzes heart sounds through the efficient extraction 
of local features from time-series data; this ability to 
detect time-series patterns is critical for the precise 
classification of MR severity [47]. ResNet38 improves 

classification accuracy by capturing more complex pat-
terns and features with a deeper architecture [48]. By 
contrast, PaSST employs attention mechanisms that 
allow the model to focus on critical PCG signals [49].

Our results underscore the superior performance of 
Fbank over the mel spectrograms. Although mel spec-
trograms convert frequencies to a logarithmic scale 
that closely mimics human auditory perception, they 
may miss subtle variations in certain frequency bands 
[50]. By contrast, Fbank employs filter bank analysis 
to extract the frequency components, making it more 
adept at identifying critical frequency bands [51]. This 
distinction likely accounts for the superiority of Fbank 
observed in our experiments.

Furthermore, the study highlights the unique 
strengths of CNN6 in extracting local features, which 
proves to be more effective in this context than trans-
former models—known for their ability to learn global 
relationships in long-sequence data—but potentially 
less effective at capturing local patterns. Although 
ResNet38 structure enables the capture of more com-
plex patterns, it requires more computational resources 
and carries a higher risk of overfitting.

It can be reasonably deduced that the anatomical 
and physiological variations inherent to the conforma-
tion of the canine chest, as well as the body condition 
of the animal, have a notable impact on the accuracy of 
cardiac auscultation and PCG signal. Various factors 
can influence the intensity of heart sounds, including 
chest wall thickness, distance between the heart and 
chest wall, obesity, tachycardia, anemia, and effusion. 
Specifically, the distance between the heart and chest 
wall is a significant factor that influences the clarity of 
heart sounds [52]. Although data augmentation tech-
niques are commonly recommended to improve model 
performance in this context [53], this study did not 
employ such methods. The introduction of noise dur-
ing data augmentation has the potential to compromise 
deep noise analysis by filtering out critical informa-
tion, ultimately reducing the model performance 

Table 2 Performance evaluation of deep learning models

LAAo left atrium-to-aorta ratio, LVIDDn left ventricular end-diastolic diameter normalized to body weight, FS fractional shortening of the left ventricle, E-vel E-wave 
transmitral peak velocity

Metric CNN6 PaSST ResNet38

Fbank Mel spectrogram Fbank Mel spectrogram Fbank Mel spectrogram

Accuracy (%) 94.12 (± 0.1431) 93.78 (± 0.1369) 92.66 (± 0.3852) 93.18 (± 0.2279) 92.53 (± 0.6505) 91.56 (± 0.7947)

Specificity (%) 97.3 (± 0.0009) 97.22 (± 0.0011) 96.75 (± 0.0016) 97.02 (± 0.0014) 96.8 (± 0.0016) 96.04 (± 0.0042)

Sensitivity (Recall, %) 94.12 (± 0.1431) 93.78 (± 0.1369) 92.66 (± 0.3852) 93.18 (± 0.2279) 92.53 (± 0.6505) 91.56 (± 0.7947)

Precision (%) 92.63 (± 0.2724) 93.73 (± 0.5896) 92.53 (± 0.5512) 93.43 (± 0.1964) 91.11(± 0.6216) 92.81 (± 0.7480)

F1 score (%) 93.32 (± 0.1806) 93.75 (± 0.3440) 92.59 (± 0.4684) 93.30 (± 0.1880) 91.75 (± 0.5024) 92.14 (± 0.6770)

Fig. 6 Model training and validation accuracy for evaluating 
the severity of mitral regurgitation. This figure depicts the accuracy 
curves during the training and validation phases of the deep learning 
model designed to evaluate the severity of mitral regurgitation. 
The blue line represents the training accuracy, whereas the red 
line represents the validation accuracy. The graph illustrates 
the progression of accuracy over multiple epochs, highlighting 
the learning and generalization capabilities of the model
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[53, 54]. Despite these challenges, data augmentation 
remains valuable for enhancing medical classifica-
tion tasks, such as screening and triage. Although this 
study did not employ data augmentation owing to con-
cerns regarding noise introduction, it has proven to be 
effective in other areas, such as cardiac sound analy-
sis, by generating synthetic data that accurately reflect 
physiology. Future technological advancements and 
the incorporation of clinician input will be crucial for 
developing models that are accurate and clinically use-
ful [55].

The findings of this study have important implica-
tions for the management of canine MMVD. Studies in 
dogs with MR attributable to MMVD have revealed that 
increasing MR severity is associated with the character-
istic features of PCG recordings. One study identified 
that changes in heart sounds and murmurs were related 
to the severity of chronic valvular disease in Cavalier 
King Charles Spaniels [56]. Although some studies have 
reported variability in the auscultation of mild MR in 
dogs, considering factors such as the effects of physical 
maneuvers and agreement with color Doppler echocar-
diography and  PCG19, it is generally accepted that as the 
severity of MR increases, the murmur tends to extend 
from early or late systole to holosystolic [56], with a cor-
responding increase in the amplitude and frequency of 
the murmur. The CNN6 model leverages these distinc-
tions by identifying specific features within heart sounds 
that correlate with MR severity, such as the intensity 
and frequency of murmurs [57], providing a non-inva-
sive and efficient method for assessing MR. As MMVD 
progresses, the severity of regurgitation increases, 
making regular monitoring vital for effective disease 
management.

The high classification accuracy of the CNN6 model 
demonstrates the potential of deep learning-assisted 
auscultation tools to provide reliable and rapid assess-
ments of MR severity [58]. This may provide prognos-
tic insight, aiding veterinarians in assessing prognosis 
and making more informed clinical decisions, thereby 
potentially contributing to improved patient outcomes. 
These findings suggest that the use of PCG signals for 
MR assessment could potentially complement echocar-
diographic evaluations by simplifying the diagnostic pro-
cess and improving accessibility. Nevertheless, further 
investigation is required to evaluate how effectively this 
deep learning model can detect changes in MR severity 
and facilitate timely veterinary intervention, ensuring its 
practical utility in clinical and diagnostic settings.

Accurate assessment and monitoring are critical for 
managing cardiac diseases, and digital stethoscopes with 
AI-assisted auscultation provide a practical solution by 
detecting subtle changes in heart health and supporting 

the management of conditions like  MMVD23. However, 
the adoption of such technologies is often limited by 
high costs and the need for specialized training. Afford-
able alternatives, such as deep learning-enhanced digi-
tal stethoscopes, address these challenges by combining 
accessibility with diagnostic reliability, bridging the gap 
between innovation and practicality to improve out-
comes in routine clinical practice [56, 59, 60].

This study also investigated the explainability of the 
CNN6 model’s predictions using gradient-weighted class 
activation mapping (Grad-CAM). Grad-CAM visualiza-
tions identified areas of high activation in spectrogram 
regions corresponding to transformed PCG signals, 
indicating that the model predominantly relied on heart 
sounds for its predictions [Additional File 4]. However, 
the approach was limited in its ability to pinpoint spe-
cific PCG characteristics—such as murmur intensity, 
the S1/S2 amplitude ratio, and other features previously 
associated with MR severity—that informed the mod-
el’s decisions [21]. This limitation arises from the Fbank 
transformation, which applies overlapping windows and 
fixed Mel bins, reducing temporal resolution and hinder-
ing the direct attribution of specific temporal features to 
the model’s predictions.

These challenges highlight the inherent"black 
box"nature of deep learning models, where the underly-
ing decision-making processes are often opaque and dif-
ficult to interpret. Such opacity raises critical concerns 
regarding clinical accountability, particularly in diagnos-
tic applications where understanding the basis of a mod-
el’s decisions is essential to ensure safety and reliability 
[61, 62].

Expanding on these results, our next steps will focus 
on integrating explainable AI methodologies capable of 
uncovering the specific PCG features that drive model 
predictions. These advancements will enhance transpar-
ency and provide deeper insights into how deep learning 
models utilize PCG data, ultimately refining their diag-
nostic utility and fostering greater trust in their applica-
tion for managing canine MMVD.

Despite the promising results, some limitations should 
be considered. First, the data were collected exclusively 
from a single veterinary clinic, which may limit the gen-
eralizability of the findings to other clinical settings. 
Second, the relatively small sample size and insufficient 
representation of late-stage MMVD cases constrained 
the model’s ability to fully address advanced disease sce-
narios, underscoring the need for validation in larger 
and more diverse populations. Furthermore, the study 
focused solely on MMVD patients, excluding healthy 
controls, which may have limited the model’s ability to 
generalize across a broader spectrum of clinical condi-
tions. Another important consideration is that the heart 
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sound recordings were obtained under controlled clinical 
conditions by specialized veterinary practitioners. Vari-
ability in recording environments, practitioner expertise, 
and device settings was not accounted for, which may 
affect the model’s robustness in real-world scenarios. In 
addition, pharmacological treatment was ongoing in a 
subset of dogs at the time of data collection, potentially 
affecting echocardiographic parameters such as LA/Ao 
and LVIDDn. These treatment-related factors may have 
contributed to variability in the echocardiographic find-
ings, complicating the interpretation of MINE scores.

Finally, the analysis was based on the MINE classifica-
tion system, which offers valuable prognostic insights, 
but is not aligned with other widely adopted frameworks 
such as the ACVIM consensus statement. The ACVIM 
consensus statement offers definitive guidance for dif-
ferentiating between stage B1 and B2, a pivotal decision 
point for initiating treatment. In contrast, the MINE clas-
sification, based on echocardiographic parameters, does 
not address this critical clinical threshold, limiting its 
applicability for early intervention. Additionally, reliance 
on the MINE classification excludes diagnostic tools such 
as thoracic radiography and clinical assessments, which 
are essential for identifying stage C and D. These limita-
tions constrain the scope of the findings and reduce their 
utility in veterinary practice.

Addressing these limitations in future studies will be 
critical to improving the robustness and applicability of 
the proposed algorithm. Among these, pharmacologi-
cal factors warrant particular attention. Although treat-
ment variables were not included in the current analysis, 
future models may benefit from integrating pharma-
cological data. In particular, the use of diuretics, which 
directly influences heart size, could be incorporated as 
a relevant clinical parameter to enhance the clinical reli-
ability of the algorithm. Efforts should also include multi-
site data collection across diverse clinical environments, 
larger and more heterogeneous patient populations, and 
the inclusion of MMVD patients and healthy controls. 
Expanding the dataset and incorporating multimodal 
diagnostic parameters, such as echocardiographic, elec-
trocardiographic, and radiographic data, could further 
enhance the model’s accuracy and clinical utility. Evalu-
ating the model in real-world clinical workflows will also 
provide valuable insights into its practical implementa-
tion and impact on decision-making.

Conclusion
Our study demonstrated that deep learning models, 
particularly CNN6, can potentially assess MR severity 
in canine MMVD using digital stethoscope recordings. 
This methodology, which involves the analysis of heart 
sounds, offers a rapid and straightforward supplementary 

approach to echocardiography, thereby enhancing its 
diagnostic efficacy. Despite some limitations, these find-
ings highlight the possibility that incorporating deep 
learning could enhance veterinary cardiology, with fur-
ther validation and real-time applications potentially 
improving diagnostic precision and patient outcomes.
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