Skip to main content

Table 2 Performance evaluation of deep learning models

From: Deep learning-based evaluation of the severity of mitral regurgitation in canine myxomatous mitral valve disease patients using digital stethoscope recordings

Metric

CNN6

PaSST

ResNet38

 

Fbank

Mel spectrogram

Fbank

Mel spectrogram

Fbank

Mel spectrogram

Accuracy (%)

94.12 (± 0.1431)

93.78 (± 0.1369)

92.66 (± 0.3852)

93.18 (± 0.2279)

92.53 (± 0.6505)

91.56 (± 0.7947)

Specificity (%)

97.3 (± 0.0009)

97.22 (± 0.0011)

96.75 (± 0.0016)

97.02 (± 0.0014)

96.8 (± 0.0016)

96.04 (± 0.0042)

Sensitivity (Recall, %)

94.12 (± 0.1431)

93.78 (± 0.1369)

92.66 (± 0.3852)

93.18 (± 0.2279)

92.53 (± 0.6505)

91.56 (± 0.7947)

Precision (%)

92.63 (± 0.2724)

93.73 (± 0.5896)

92.53 (± 0.5512)

93.43 (± 0.1964)

91.11(± 0.6216)

92.81 (± 0.7480)

F1 score (%)

93.32 (± 0.1806)

93.75 (± 0.3440)

92.59 (± 0.4684)

93.30 (± 0.1880)

91.75 (± 0.5024)

92.14 (± 0.6770)

  1. LAAo left atrium-to-aorta ratio, LVIDDn left ventricular end-diastolic diameter normalized to body weight, FS fractional shortening of the left ventricle, E-vel E-wave transmitral peak velocity